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Part 1

Theoretic Background Information
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Review of Hooke’s law for linear elastic materials (1)

Fundamental equation, well known to all engineers, is:

In this equation, the proportionality constant E between
strain and stress is the “Modulus of Elasticity” of the material

Hooke’s law is not as simple as it looks like above: This equation is just valid for 
the special case of uniaxial tension and in the direction of this tension!

In order to cover three-dimensional stress and strain 

εσ ⋅= E
σ, εσ, ε

In order to cover three-dimensional stress and strain 
states, in a first step we solve this equation for ε and 
just look for the first principal strain:

Now, we add on the right side of this equation the missing terms 
from the two lateral principal stresses σ2 and σ3. Compared to 
σ1, these lateral stresses influence the first principal strain 
ε1 much less: So, they are multiplied with a “proportionality 
constant” ≤0.5, known as the Poisson’s ratio ν:
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Review of Hooke’s law for linear elastic materials (2)

If we do the same in the other two orthogonal principal directions, we obtain the 
general formulation of Hooke’s law:

( ){ }

( ){ }

( ){ }

3122

3211

1

1

1

σσνσε

σσνσε

σσνσε

+−⋅=

+−⋅=

+−⋅=

E

E

σ1, ε1

σ2, ε2

Remark:
If we also take into account thermal strains, we 
obtain in direction 1 for example

Hence, the well known simple equation to calculate a 
stress-free length change from heating up a material

( ){ } ϑασσνσε ∆⋅++−⋅= 3211

1

E

ϑα ∆⋅⋅=∆ ll

The limits of the Poisson ratio ν are:

– ν=0: no influence of lateral stresses to the strain (no lateral contraction)

– ν=0.5: incompressible material, means there is no volume change under loads 
(of course there is usually a big change in shape under loads!)

– ν=0.2…0.3: typical values for linear elastic material like ceramic & metal
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The strain energy density of linear elastic materia ls (1)

When loading and unloading a linear elastic material, we “drive” along the same 
straight line in the stress-strain characteristic curve:

σ

The strain energy density W of such a material  is expressed as the half value of 
the double dot product of stress tensor S and strain tensor E:

To explain it more simply for listeners who are not familiar with tensor operations, 
let’s have a look at a simple spring: Every engineer knows its spring energy is 

with K=spring stiffness and ∆l=spring elongation
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The strain energy density of linear elastic materia ls (2)

If our spring is a simple tension rod, its spring constant becomes K=EA/l 
(A=cross section, l=rod length), so we obtain for the spring energy with ε=∆l/l

The strain energy density W now is the spring energy within each unit volume of 
the spring. Since for the simple tension rod we have V=Al, we obtain:
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With σ=Eε we can conclude for the strain energy density of uniaxially loaded 
linear elastic material:

This is exactly the area below the stress-strain curve:
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Hyperelastic material (1)

Hyperelastic and linear elastic material:

A hyperelastic material is still an elastic material, that means it returns to it's 
original shape after the forces have been removed 

Hyperelastic material also is Cauchy-elastic, which means that the stress is 
determined by the current state of deformation, and not the path or history of 
deformation

The difference to linear elastic Material is,
that in hyperelastic material the stress-strain 
relationship derives from a strain energy 
density function, and not a constant factor

This definition says nothing about the 
Poisson's ratio or the amount of deformation 
that a material will undergo under loading

However, often elastomers are modeled as 
hyperelastic. Hyperelasticity may also be used
to describe biological materials, like tissue
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Hyperelastic material (2)

Elastomers are often modeled as hyperelastic.

Elastomers (like rubber) typically have large strains (often some 100 %) at small 
loads (means a very low modulus of elasticity, for example just 10 MPa). The 
material is nearly incompressible, so the Poisson’s ratio is very close to 0.5

Their loading and unloading stress-strain curve is not the same, depending on 
different influence factors (time, static or dynamic loading, frequency…). This 
viscous behavior is ignored if the hyperelastic material model is used for 
descriptiondescription
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Typical measurements are 
often performed for 
example until 300 % strain
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Hyperelastic material (3)

Elastomer material in comparison with metals and pla stics:

Energy-elasticity: Loading 
changes the distance of the atoms 
within the lattice of the metal and 
so increases the internal energy. 
When unloading it, this energy is 
immediately set free, the initial 
shape appears again
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immediately set free, the initial 
shape appears again

Entropy-elasticity: Within an 
elastomer, it’s macromolecules 
are balled if unloaded. During 
loading, a stretching and unballing
appears. After unloading, more or 
less the unordered state appears 
again

Viscous behavior: every loading 
leads to an even small remaining 
deformation (creeping, relaxation)
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Material laws for hyperelastic materials (1)

The nominal or engineering strain is defined as the change in length divided by 
the original length:

The stretch ratio λ now is another fundamental quantity to describe material 
deformation. It is defined as the current length divided by the original length:
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Analog to the three principal strains, we obtain from the principal axis 
transformation the three principal stretch ratios 

The three stretch invariants (because independent from the used coordinate 
system) of the characteristic equation are analog:

with J: total volumetric ratio; if incompressible = 1
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Material laws for hyperelastic materials (2)

The description of the strain energy density W is much more complex compared 
to linear elastic material, where the stress is just a linear function of strain

For hyperelastic material, the second Piola-Kirchoff stress*) is defined from 
strain energy density function and Green-Lagrange strain (first derivative)

In general, the strain energy density function in hyperelastic material is a 
function of the stretch invariants W = f(I1,I2,I3) or principal stretch ratios W = 
f(λ1, λ2, λ3), which is described in more detail on the next slidesf(λ1, λ2, λ3), which is described in more detail on the next slides
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Constraints on the strain energy function W:

a) Zero strain = Zero energy: W(0)=0
(no energy is stored, if not loaded)

b) Zero strain = Zero stress: W’(0)=0
(unloaded condition)

c) Second derivative must be positive:
W’’(ε)=σ‘(ε)>0 for all ε
(stress always increases if strain
increases, otherwise instability!)
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the 2nd Piola-Kirchhoff stress tensor relates forces in the reference configuration to areas in the reference configuration



Material laws for hyperelastic materials (3)

Because of the material incompressibility, the deviatoric (subscript d or with 
‘bar’) and volumetric (subscript V) terms of the strain energy function are split. 
As a result, the volumetric term is a function of the volume ratio J only
(remember J2=I3):

So, W is the strain energy necessary to change the shape, W the strain energy 
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So, Wd is the strain energy necessary to change the shape, WV the strain energy 
to change the volume.

For typical hyperelastic material models, often phenomenological models are 
used, where the strain energy function has the form:

The Cij and Dk are material constants which have to be determined by tests. 

This means, the strain energy function is a polynomial function. Depending on its 
order, no (=single curvature),  one or more inflection points in the stress-strain 
curve may appear. For the higher order functions, enough test data has to be 
supplied!
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Material laws for hyperelastic materials (4)

As mentioned, typical hyperelastic material models have the form:

Mechanica now supports five hyperelastic material laws of such a type:

– Neo-Hookean (is the most simple approach):
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– Mooney-Rivlin: 

– Polynomial form of order 2:

– Reduced Polynomial form of order 2:

– Yeoh (proposed not to use the second invariant term I2, since it is more difficult to 
measure and provides less accurate fit for limited test data):
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Material laws for hyperelastic materials (5)

The sixth material law supported by Mechanica, Arruda-Boyce, has a slightly 
different form (it is not a phenomenological, but a micromechanical model):

Here, the material constants have physical meaning: µ=G0 as initial shear 
modulus, λm as the limiting network stretch and D=2/K0 as the incompressibility 
parameter. This model is based on statistical mechanics; the coefficients are parameter. This model is based on statistical mechanics; the coefficients are 
predefined functions of the limiting network stretch λm. This is the stretch in the 
stretch-strain curve at which stress starts to increase without limit. If λm becomes 
infinite, the Arruda-Boyce form becomes the Neo-Hookean form! 

Remark for all material models: Je is 
just the elastic volume ratio given by

with J = the total volumetric ratio,
Jth = thermal volume ratio
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Material laws for hyperelastic materials (6)

Some general remarks:

The initial shear and initial bulk modulus, G0 = E0/(2(1+ν)) and K0 = E0/(3(1-2ν)), 
can be described with help of the material constants, for example in the material 
models of Neo-Hookean and Yeoh:
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For Mooney-Rivlin for example, the initial shear modulus becomes:

Which is the equivalent Poisson ratio used?

The Poisson ratio used in the analysis can be determined from the used values 
for the initial shear and initial bulk modulus by the equation

For example, if K0 /G0 =1000, ν≈0,4995
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About selecting the material model and performing t ests (1)

What is the “right” model to describe my material?

If the strain is below approx. 5-10 %, for many applications the simple Hooke’s law 
is accurate enough to describe hyperelastic materials, so the time-consuming 
nonlinear analysis can be replaced by a very quick linear one

If the strain becomes bigger, but no or not a lot of test data is available, it is a 
good idea to start as a rough estimate with the most simple model, Neo Hookean:

– In a first step, incompressibility can be assumed by setting ν=0.5 or close to 0.5– In a first step, incompressibility can be assumed by setting ν=0.5 or close to 0.5

– In the literature, some (rough) empirical formulas can be found for the relation of the 
Shore-hardness H and the shear modulus G0 or initial E-modulus E0; for example:

* Battermann & Köhler: G0 = 0,086*1,045H

* Rigbi (H=Shore A hardness): H = 35,22735+18,75847 ln(E0)

– Finally, the only two necessary material constants C10=G0/2 and D1=2/K0 can be simply 
obtained from the initial shear and initial bulk modulus, G0 = E0/(2(1+ν)) and K0 = E0/(3(1-
2ν)) or K0 =2G0(1+ν)/(3(1-2ν)), like shown on the previous slide. If ν=0.5, then we of 
course have K0=∞ and so D1=0

If more test data is available, it is possible to let Mechanica select the best suitable 
material model. However, be very careful when the analysis is done for strains 
bigger than the maximum strain measured in the test! The higher-order material 
models in this case do not necessarily provide a higher accuracy!
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About selecting the material model and performing t ests (2)

How do I have to derive the right characteristic cu rve from the test?

First of all, it is important that the strain rate applied in the test should be as 
close as possible to the strain rate applied in the later application, so that an 
accurate analysis can be performed for exactly this state!

Elastomer material typically shows a hysteresis and an effect called “stress 
softening” *): After some cycles, the stress related to a certain strain decreases. 
This effect is not taken into account by the models previously described, so you 
have to perform the following treatment like shown in this sketch:have to perform the following treatment like shown in this sketch:

– Select that cycle from the test data set for 
which you want to analyze your model:
- loading or unloading
- initial or nth cycle

– Subtract offset strain and stress

– Perform curve fitting

*)  For a possible model describing this effect, look for example in: 
H.J. Qi, M.C. Boyce (Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 
02139, USA): Constitutive model for stretch-induced softening of the stress–stretch behavior of elastomeric materials; 
Journal of the Mechanics and Physics of Solids, Received 1 December 2003; accepted 14 April 2004
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Implementation of hyperelastic material laws in Mech anica (1)

General remarks:

Mechanica uses p-order finite element implementation to analyze hyperelastic
materials. One of the advantages is that no special procedure is needed when 
the Poisson's ratio approaches to 0.5

Literature sources for high-order finite element method can be found in the book 
“Finite Element Analysis” by Barna Szabo and Ivo Babuska. Specifically, on 
page 188, “In p-extension, the rate of converge (energy norm) is not affected by page 188, “In p-extension, the rate of converge (energy norm) is not affected by 
Poisson's ratio.” And on page 209, “Hence, locking does not occur. The 
elements can deform while preserving constant volume.“

Handling of nearly incompressible material in Mecha nica:

If the value specified for D1=2/K0 is less than 1/500G0, Mechanica uses this 
value as limit for D1. So, we obtain for the maximum possible Poisson’s ratio 
used to “approximate ideal incompressibility”:

Remark: In linear elastic material analysis, the max. possible Poisson ratio 
Mechanica supports is 0.4999
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Implementation of hyperelastic material laws in Mech anica (2)

Supported model/element types for hyperelastic mater ial analysis:

Large displacement analysis (LDA) is required for hyperelastic material analysis. 
All model/element types that support LDA also support hyperelastic material:

• 3D volumes

• 2D plane stress

• 2D plane strain• 2D plane strain

• 2D axial symmetry (will be supported in Wildfire 6)

• Actually no support of beams and shells

LDA: The forces and moments are equated iteratively at the deformed structure, 
as opposed to to SDA (small displacement analysis). Hence, an iterative procedure 
must be used to solve the nonlinear matrix equation for static analysis K(u,f).u=f 

Mechanica uses a modified Newton-Raphson procedure for this. To increase 
speed, BFGS (Broyden–Fletcher–Goldfarb–Shanno method) is used so that the 
stiffness matrix does not have to be computed and decomposed as often. 
A line search technique is used to control step size (reference: Bather, Klaus-
Jürgen, Finite Element Procedures in Engineering Analysis, Prentice-Hall 1982)
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Implementation of hyperelastic material laws in Mech anica (3)

Achieving convergence of the nonlinear matrix equat ion K(u,f) .u=f using 
Newton-Raphson technique:

Before convergence we can calculate the residual error corresponding to the 
latest solution of the displacement vector u: r=f-Ku. Here, the residual vector r, 
has the dimensions of force (this force must be zero for system convergence). 
The Newton-Raphson solution then solves for Kdu=r to determine the change in 
u in the next iteration. 

The residual norm is the dot product r.du. It can be thought of physically as a 
residual energy, which should be zero when we're converged. We normalize the 
residual norm with the dot product of the total displacement and the total force 
vector, so the residual norm is: (r.du)/(u.f).

This residual norm must be smaller than the default value of 1.0E-14 to achieve 
convergence for the "Residual Norm Tolerance" in Mechanica (see .pas-file)

Further reading: 
Crisfield, M: Nonlinear Finite Element Analysis of Solids and Structures
Wiley, 1991, p 254.
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Defining hyperelastic material parameters in Mechani ca (1)

The user has the following three options to define hyperelasticity:

Select one of the 6 implemented material models and enter the necessary 
material constants manually 

Enter test data. Mechanica uses a Least Square Fitting algorithm (minimizing 
the normalized stress errors) to calculate the constants from the input test data 
for each material model. Then select the material model manually 

Let Mechanica automatically choose the material model with the best fit in the 
test domain based on the Root Mean Stress error

Check of the different material models from test da ta input:

Mechanica performs a check on the stability of the material for six different forms 
of loading for 0.1≤λ≤10.0 in intervals of ∆λ=0.01. The forms of loading are:

– Uniaxial tension and compression

– Equibiaxial tension and compression

– Planar tension and compression

For each loading type and λ, the tangential stiffness D must be >0
23 © 2010 PTC



Defining hyperelastic material parameters in Mechani ca (2)

Treating material model instability

If an instability is found, Mechanica marks the model in the test data form with 
an exclamation mark and will not select it automatically (even though it may 
have a very small RMS error!)

If the user overrides this by manually selecting the instable 
material model, Mechanica issues a warning message with 
the values of ε for which instability is observed (-0.9≤ε ≤9.0)the values of ε1 for which instability is observed (-0.9≤ε1≤9.0)

The model may be used just up to these limits, otherwise the analysis will fail!

The following four types of tests are supported:

Uniaxial: Uniaxial tension

Biaxial: Equibiaxial tension

Planar: A certain plain strain condition (as described later)

Volumetric: Hydrostatic pressure

These stress/strain & stretch states are depicted on the next slide, respectively
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Defining hyperelastic material parameters in Mechani ca (3)

Uniaxial: ε1

ε2

ε3

2
3

2
2

1

11
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Idealized stress/strain states of the four hyperelast ic material tests 
supported in Mechanica:

Planar:

1,
1

3
2
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λ

λ
ε1

ε2

σ1
σ3

Remark: 
Stresses (red) or strains (blue) where no arrow is shown are Zero!

Equibiaxial:
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(σ3 is positive because of lateral strain 
suppression in 3-direction, but not applied as 
external force like σ1)
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(hydrostatic pressure 
p=σ1=σ2 =σ3)

© 2010 PTC



Defining hyperelastic material parameters in Mechani ca (4)

Obtaining the material constants C ij and D k from the test data input: 

From the uniaxial, equal biaxial, and planar tests, only the Cij are determined. 
The material is assumed to be incompressible, if no additional volumetric test 
data is given! In this case, the Dk's are shown as 0 (meaning incompressible). 
Remember, the engine assumes a nearly incompressible material then and uses 
D1 = 1/(500 G0) during the analysis like previously described (means ν=0.4995)

From the volumetric test, only the D 's are being estimated; in this case of From the volumetric test, only the Dk's are being estimated; in this case of 
course, incompressibility is not assumed. The Cij cannot be calculated from this 
test because hydrostatic pressure just creates a volume change and no shape 
change! That’s why a volumetric test alone is not sufficient to characterize 
hyperelastic material

If more than one test is entered, then the data from all of the tests are considered 
when determining the material properties. No one test counts more than any of 
the others; all tests are considered equally

Important Remark:
In general, engineering (nominal) values have to be entered for stress and strain 
into the test data forms!
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Test set-ups and specimen shapes of the supported m aterial tests (1)

Uniaxial: 

This is the classical uniaxial tension rod mounted into a tensile testing machine 

Note: The strain must of course be measured in the thinner area of the test rod, 
for example by optical scanning (video extensometry); the thicker parts of the 
tension rod which are clamped must not be taken into account!

27 © 2010 PTC
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Test set-ups and specimen shapes of the supported m aterial tests (2)

Biaxial:

This is a disk under equibiaxial tension. The specimen mounted into a “scissor” 
fixture for an uniaxial testing machine and the stress state may look as follows:

For this specimen type, 
failure will occur in the 
edges where the load is 

28 © 2010 PTC
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Test set-ups and specimen shapes of the supported m aterial tests (3)

Biaxial (cont’d):

Another test setup and specimen for equibiaxial tension may look like this:

29 © 2010 PTC
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Test set-ups and specimen shapes of the supported m aterial tests (4)

Planar: 

A thin sheet of hyperelastic material is clamped, so that lateral strains are 
prohibited here, and pulled!

ε1

ε2

Acc. to ref. CMMT(MN)054, the 
planar test results shall be 
relatively insensitive to the grip 
separation “d”, but this should be 
treated with care for larger 
strains. See the planar test 
example in part 2 of this 

d
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Test set-ups and specimen shapes of the supported m aterial tests (5)

Volumetric

A volumetric test setup like this 
compresses a cylindrical elastomer
specimen constrained in a stiff fixture

The actual displacement during 
compression is very small and great care 
must be taken to measure only the must be taken to measure only the 
specimen compliance and not the 
stiffness of the instrument itself 

The initial slope of the resulting stress-
strain function is the bulk modulus. This 
value is typically 2-3 orders of magnitude 
greater than the shear modulus for dense 
elastomers

31 © 2010 PTC
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The uniaxial compression test (1)

Simple compression:

Biggest problem of this test is that lateral strains are disturbed 
by friction effects

From the analysis results shown below, one can conclude that 
even very small levels of friction significantly affect the 
measured stiffness. Furthermore, this effect is apparent at both 
low and high strains. This is particularly troubling because low and high strains. This is particularly troubling because 
friction values for elastomers are typically a function of normal 
force and are not well characterized 

As such, the experimental compression 
data cannot be corrected with a 
significant degree of certainty

Unfortunately, both tension and
compression information is valuable 
to obtain because unlike some metal 
material models, elastomers behave 
very differently in compression than
in tension!
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The uniaxial compression test (2)

According to Axel Testing Services, the equibiaxial extension 
experiment also provides compression information: 

– As an elastomer is radially strained in all directions in a single plane, 
the free surfaces come together

– For incompressible materials, the state of strain in the material is the 
same as that in simple compression (if free from friction!). The 
measured experimental parameters are radial strain and stress ?measured experimental parameters are radial strain and stress

– These biaxial strains and biaxial stresses can be converted directly 
to compression strains and compression stresses as follows:

σc: nominal compression stress
σb: nominal biaxial extension stress
εc: nominal compression strain
εb: nominal biaxial extension strain 

– It typically isn’t necessary to do this 
conversion because most curve 
fitters accept equibiaxial extension 
data directly (like Mechanica)
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Stress and strain definitions in the Mechanica LDA a nalysis (1)

Material test definitions: 

Remember: In Mechanica, engineering (nominal) values have to be entered for 
stress and strain into the hyperelastic test data forms!

Analysis results:

Mechanica reports true stresses in the LDA analysis (in SDA of course, nominal 
values are output: There is no significant difference between true and nominal values are output: There is no significant difference between true and nominal 
stress!)

Unlike for the test definitions, Mechanica does not use engineering strains in 
LDA. Mechanica reports the so called “Eulerian” or “Almansi” strain, which 
becomes surprisingly small for large nominal tension strains and very big for 
large negative strains (theoretic maximum for infinite nominal tension strain is 
just 0.5!)

The reason is that this strain is defined with respect to the current configuration 
(stretched length l1) of the body – not the initial length l0! 

For further explanation, the next slide shows the equations for the different strain 
definitions

34 © 2010 PTC



Stress and strain definitions in the Mechanica LDA a nalysis (2)

Strain definitions:

There are multiple choices for reporting strain in large deformation problems 
(Reference for example: B. R. Seth. Generalized strain measure with applications to physical problems. In D. Abir M. 
Reiner, editor, Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics, pages 162–172. Pergamon Press, 
Oxford, 1964.)

The various strain measures have the following values for a tensile rod 
(l0 is the initial length, l1 is the current length):

lll ∆−
– Infinitesimal, “engineering” or Cauchy strain:

(for small displacement problems only)

– Logarithmic (“natural”, “true”, “Hencky”) strain:
(obtained by integrating the incremental strain)

– Green-Lagrange Strain:
(defined with respect to the initial configuration)

– Eulerian (Almansi) Strain:
(defined with respect to the deformed 
configuration)
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Stress and strain definitions in the Mechanica LDA a nalysis (3)

Graphical representation of the different strains:
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Part 2

Application examples
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A test specimen subjected to uniaxial load (1)

Test specimen and test data: 

Provided uniaxial test data 
(engineering values) of 
an example elastomer:

Test specimen acc. to DIN 53504-S2
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Loaded cross 
section is 8 mm2

Test specimen acc. to DIN 53504-S2

R12.5



A test specimen subjected to uniaxial load (2)

For the Arruda-
Boyce model, the 
Least Square Fitting 
algorithm failed, so it 
cannot be used (and 
is not displayed)

The exclamation 
mark means, that for 
a certain strain 
range, the model is 
unstable (Zero 
tangent stiffness)
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entered test data
(engineering values)

tangent stiffness)

Mechanica
automatically 
selects “Polynomial 
Order 2” – model as 
best fit to test data

The “D”-values are 
shown as zero 
(=incompressible), 
since no volumetric 
test has been 
specified. However, 
internally Mechanica
uses D1=D2= 
1/(500G), which 
corresponds to a 
Poisson ratio of 
0.4995

If this box is unchecked, you can manually enter the 
coefficients for the material law and compare them with the 
test points in the graph

G0= 2(C10+C01)=3.11234 MPa

K0=2/D1=3112.34 MPa (ν=0,4995!)

� E0=2G0(1+ν)= 9.3339077 MPa



A test specimen subjected to uniaxial load (3)

Model Set-Up

There are different ways to set up the FEM-model of the specimen:

– The most “realistic” one is to use the complete specimen geometry from Pro/E, prepare 
and mesh it, define the material and run the analysis. This looks of course nicest

– However, to save time we will just run an eighth part of the measurement-zone of the 
model with symmetry constraints, containing just three bricks (you could also use 2D 
plane stress of course!). This analysis will run very fast!plane stress of course!). This analysis will run very fast!

We create some measures to determine the engineering values for stress and 
strain, since the Mechanica engine reports only true stress and Almansi strain:

– A measure for nominal strain, using the following formula that derives the engineering 
strain ε from the Eulerian (Almansi) strain εE output by Mechanica:

– As cross-check, a measure for nominal strain, derived from the specimen length 
change devided by the initial length (with help of a Mechanica computed measure)

– A computed measure for nominal stress, using the constraint reaction force divided by 
the initial cross section
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A test specimen subjected to uniaxial load (4)

FEM model

Full model:

Eighth part of the measurement-zone of the model with symmetry constraints: 
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Results (displacement magnitude, deformed shape in scale)

Full model:

A test specimen subjected to uniaxial load (5)

Eighth part of the measurement-zone of the model with symmetry constraints:

Eighth part just with linear behavior (small strain solution and properties): 
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Stress-strain-curves of the example
elastomer

A test specimen subjected to uniaxial load (6)
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Here, a good match between the linear and 
hyperelastic material model is just prevailing 
below strains of approx. 5%!



Engineering stress and strain versus stretch

A test specimen subjected to uniaxial load (7)
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Almansi strain goes for 
theoretical limit of 0.5
(0.491 for max. load 
applied)



A volumetric compression test (1)

Test specimen and test data: 

Like shown in the section about material tests, in a volumetric test a cylindrical 
specimen is uniaxial compressed while it is constrained in a very stiff fixture

From Hooke’s law, we have with σ1=σax=F/A, σ2=σ3=σq and ε2=ε3 =0:

( ){ } 2
11

3211 =






 −⋅=+−⋅= axqA

F

EE
ενσσσνσε

So, we have two different equations to solve for the 
two unknown quantities σq and εax. We obtain: 
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A volumetric compression test (2)

Analytical calculation of volumetric test specimen behavior: 

Our cylindrical specimen has a diameter of 5 mm and a length of 20 mm. 
We apply a force of F=100 N. We use the same elastomer material like in the 
uniaxial test before. We obtain with ν=0.4995 and E= 9.3339077 MPa:

MPa
F

mmdA

σ

π

092958.5

63495.19
4

22

==

==

σ
εax

F

With ν=0.4999, the maximum value supported in Mechanica for linear materials, 
we obtain: 
σq= 5.090921 MPa,  εax = 0.000327297 and ∆l= 6.546 µm

46 © 2010 PTC

mmmll

A

F

E

MPa
A

F

MPa
A

F

ax

ax

q

ax

µε
ν

νε

ν
νσ

σ

330.0326948

0.00163474
1

21
1

082782.5
1

092958.5

2

≈==∆

=








−
−=

=
−

=

== σax σq

σq



A volumetric compression test (3)

Comparison of hyperelastic material with steel: 

If we compress a steel cylinder with the same dimensions, we obtain with 
E=210000 MPa for the unconstrained condition (σq =0):

With ν=0,3 we obtain (constrained condition ε =0):

m
dE

Fl

EA

Fl
l

lKFlEAK

µ
π

485.0
4

;/

2
===∆

∆==
σax

εax

εq

εq

unconstrained

With ν=0,3 we obtain (constrained condition εq =0):

σq=2.183 MPa,  εax=1.8016 E-5 and ∆l=0.36 µm

Because of the compressibility of steel, there is not a big 
difference to the unconstrained condition (factor ≈1,35)!

The elastomer cylinder, assuming ν=0.4999, deforms 
just 18 times more (∆l= 6.546 µm) than the steel cylinder,
even though its E-modulus is approx. 22500 times lower!

�Elastomer material can behave surprisingly stiff under
certain conditions! Take this into account when designing 
for example “soft” rubber layers to homogenize bearing stress!
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σax σq

σq

εax

A volumetric compression test (4)

Model Set-Up: 

Since we have for this condition just very small 
deformations, we could run the compression test 
analysis with the linear theory as 2D axial symmetric 
model (in WF6, 2D axial symmetric models will also 
support LDA and hyperelasticity)

Mechanica in this case automatically selects the initial Mechanica in this case automatically selects the initial 
values G0 and K0 from the example elastomer test data 
input (equivalent to E0=9.3339 and ν=0.4995)

However, we will run the compression test as 2D plane 
strain model. This is possible, since for this loading 
condition the axial displacement for a given axial stress
is not a function of the specimen cross section, but just 
of its length!

In 2D plane strain, we can run the model linearized
and with LDA including hyperelasticity, to check the 
difference!
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2D plane 
strain



A volumetric compression test (5)

Model Set-Up: 

For this simple stress state without any gradients, a very course mesh is 
sufficient to obtain accurate results:

Also in this model, we define a computed measure for the 
engineering strain to compare it with the Almansi strain 
reported in LDA. The difference 
should be negligible here!
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A volumetric compression test (6)

Analysis results: 

As expected, the difference between analytical results, SDA with linear material 
data and LDA with hyperelastic material is very small for volumetric compression:
Linear analysis results (Multi Pass):

max_stress_xx:     -5.082782e+00      0.0%

max_stress_yy:     -5.092958e+00      0.0%

max_stress_zz:     -5.082782e+00      0.0% MPa
F

MPa
A

F
ax

082782.5

092958.5

==

==

νσ

σ

Linear analysis results (analytical solution):
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max_stress_zz:     -5.082782e+00      0.0%

strain_energy:      2.081421e-01      0.0%

displacement_Y:    -3.269489e-02      0.0%

epsilon_ax_eng:    -1.634744e-03      0.0%
mmll

A

F

E

MPa
A

F

ax

ax

q

0.0326948
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21
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LDA results with hyperelasticity (Single Pass):

max_stress_xx:     -5.082742e+00

max_stress_yy:     -5.092958e+00

max_stress_zz:     -5.082742e+00

strain_energy:      2.077312e-01

Almansi_strain:    -1.638205e-03

displacement_Y:    -3.268382e-02

epsilon_ax_eng:    -1.634191e-03

No significant 
difference!



A planar test (1)

Specimen Geometry: 

We will use a thin sheet of the same example elastomer: 
Thickness 2 mm, clamped length 100 mm, grip separation d=30 mm  

ε1

ε2
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test zone

σ1

σ3

F

F

lateral strain ε3=0 
because of clamping!



A planar test (2)

ε1

σ1

ε2

plane 
strain

Test specimen idealizaion: 

The most simple way to analyze this specimen is 
a 2D plane stress model (even though it contains 
a planar strain state – theoretically at least in the 
measurement zone in the center)

Quarter symmetry can be used for this plane stress
idealization (shown in red)
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σ1

σ3

plane 
stress

idealization (shown in red)

The central, vertical cross section of the specimen 
(shown in blue) could also be idealized as plane strain 
condition (just if the strain state there is sufficiently 
planar, what we will subsequently examine!) 

However, this idealization does not allow to check for 
aberrations from the ideal plane strain state at the outer 
borders of the specimen, which will influence the 
necessary tension force and so the engineering stress

Running this model with 3D solids does not give any 
advantage!



A planar test (3)

Model Setup: 

2D plane stress, quarter symmetry

Several measures have been created to track the 
nonlinear behavior especially in the center of
the measurement zone

An enforced displacement of 
30 mm, applied in increments, 
creates a maximum nominal 
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creates a maximum nominal 
strain of 200 % (λy=3) 
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A planar test (4)

Displacement results (in scale): 

Enforced displacement:
3 mm

Enforced displacement:
6 mm

Enforced 
displacement:
12 mm
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Enforced 
displacement:
18 mm

Enforced 
displacement:
24 mm

Enforced 
displacement:
30 mm

Extreme lateral 
contraction!



A planar test (5)

True stress and Almansi strain results for 30 mm dis placement ( λλλλy=3):

cu
rv

e 
2

geometric center cu
rv

e 
2

cu
rv

e 
2

cu
rv

e 
2
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curve 1

cu
rv

e 
2

x-strain along
curve 1 (this 
strain should 
be Zero for a 
plane strain 
condition!) 

z-strain along
curve 1

(out-of-plane-
strain)

y-strain along
curve 1

y-strain along
curve 2 
(becomes 
smaller when 
reaching the 
clamping zone!)

geometric center 
of the specimen

curve 1

cu
rv

e 
2

curve 1

cu
rv

e 
2

curve 1

cu
rv

e 
2



A planar test (6)

Strain results versus stretch in the geometric cent er of the specimen:

These strains are the y-values for the geometric 
center of the specimen (in the measurement 
zone, see test setup description)
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Here, the “nominal” engineering strain 
in y is the “averaged” strain from the 
total specimen elongation under y-load

The graph shows 
engineering and Almansi
strains for comparison



A planar test (7)

Engineering strain results vs. stretch in the speci men geometric center:

These graphs show 
engineering strains 
only, because this 
is more familiar for 
most users!
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We have an approximate plane strain condition just under 
very small loads! (green line = x-strain should be Zero for all 
stretch values to have a true plane strain condition!) 

For higher loadings, we obtain more and more a uniaxial
stress & triaxial strain state in the measurement zone!



A planar test (8)

Conclusions: 

In nonlinear analysis of hyperelastic material, the stress and strain state quality 
(type) may vary significantly during the analysis, not only the quantity like in 
linear analysis with metals

In the example shown, at the beginning we have a plane strain and plane stress 
condition (plane conditions in different planes, respectively). When the stretch is 
increasing, we obtain in the center of the specimen, where we measure the 
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increasing, we obtain in the center of the specimen, where we measure the 
strains, more and more a uniaxial stress and a triaxial strain state, which of 
course is something that we don’t want to have!

Hence, great care must be taken when defining multiaxial test geometry and load 
levels!

For a precise test evaluation, also FEM analyses are recommended to 
understand the specimen behavior. Mechanica can help you a lot here!



Influence of the Material Law (1)

Motivation: 

Until now, all example analyses were based on the same simple uniaxial tension 
test and the “polynomial order 2” hyperelastic material model

For comparison, we will now also examine the influence of

– the material law used: We will run some example analyses not only with the proposed 
(“automatic - best fit”) model, but also with that one on the list with the second smallest 
RMS-error;
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RMS-error;

– the stress and strain state (uniaxial or planar test)

Goal: 

Obtain a “feeling” for how sensitive our analyses and predictions are against 
such changes

Learn what to do to minimize errors



Influence of the Material Law (2)

Material law influence 

We select the best and second 
best material law for the test data 
fit (see RMS error) and re-run 
both uniaxial and planar test, 
respectively 
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Polynomial order 2 model delivers lowest 
RMS error and is therefore automatically 
proposed by Mechanica

The Yeoh model has to be selected manually



max_disp_mag:                     8.100103e+01
max_disp_x:                       1.266057e+00
max_disp_y:                      -6.330287e-01
max_disp_z:                       8.098866e+01
max_prin_mag:                     6.717262e+01
max_stress_prin:                  6.717263e+01
max_stress_vm:                    6.717262e+01
max_stress_zz:                    6.717262e+01
strain_energy:                    7.238702e+02
Almansi_strain:                   4.910613e-01
engineering_strain_from_Almansi:  6.479093e+00
engineering_strain_from_dL:       6.479093e+00
engineering_stress_from_Freac:    9.046000e+00
length_change:                    8.098866e+01

Influence of the Material Law (3)

Uniaxial Test Case

We run the uniaxial model again 
for the tension case. The 
differences are very low in this 
case, like expected!
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max_disp_mag:                     8.065296e+01
max_disp_x:                       1.261583e+00
max_disp_y:                      -6.307917e-01
max_disp_z:                       8.064063e+01
max_prin_mag:                     6.636112e+01
max_stress_prin:                  6.636112e+01
max_stress_vm:                    6.636112e+01
max_stress_zz:                    6.636112e+01
min_stress_prin:                 -4.307335e-07
strain_energy:                    7.152915e+02
Almansi_strain:                   4.909944e-01
engineering_strain_from_Almansi:  6.451250e+00
engineering_strain_from_dL:       6.451250e+00
engineering_stress_from_Freac:    9.046000e+00
length_change:                    8.064063e+01
reaction_force:                  -1.809200e+01
true_tension_stress:              6.636112e+01

length_change:                    8.098866e+01
reaction_force:                  -1.809200e+01
true_tension_stress:              6.717263e+01
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Test data for 
comparison



Planar Test Case

We run the planar model again. The 
differences are unexpectedly very big!
(see some extreme cases in red)
max_disp_mag:               3.000000e+01
max_disp_x:                -2.421340e+01
max_disp_y:                 3.000000e+01
max_disp_z:                 0.000000e+00

max_disp_mag:               3.000000e+01
max_disp_x:                -7.410746e+00
max_disp_y:                 3.000000e+01
max_disp_z:                 0.000000e+00
max_prin_mag:               2.368579e+01

Influence of the Material Law (4)
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max_disp_z:                 0.000000e+00
max_prin_mag:               4.290650e+01
max_stress_prin:            4.290650e+01
max_stress_vm:              3.942243e+01
max_stress_xx:              3.737426e+01
max_stress_xy:              1.268577e+01
max_stress_yy:              1.540157e+01
min_stress_prin:           -2.106141e+00
strain_energy:              8.355114e+03
Almansi_strain_x:          -1.411463e+00
Almansi_strain_y:           4.663071e-01
Almansi_strain_z:          -1.434179e+00
elongation_Y:               3.000000e+01
eng_strain_x_from_Almansi: -4.885514e-01
eng_strain_y_from_Almansi:  2.852263e+00
eng_strain_z_from_Almansi: -4.915635e-01
engineering_strain_y:       2.000000e+00
engineering_stress_y:       7.817140e+00
lateral_contraction_x:     -2.421340e+01
reaction_force_y:          -3.908570e+02
true_stress_x:              8.544871e-01
true_stress_y:              1.538512e+01

max_disp_z:                 0.000000e+00
max_prin_mag:               2.368579e+01
max_stress_prin:            2.368579e+01
max_stress_vm:              2.343005e+01
max_stress_xx:              1.058007e+01
max_stress_xy:              1.148228e+01
max_stress_yy:              1.362583e+01
min_stress_prin:           -4.675187e-02
strain_energy:              6.872396e+03
Almansi_strain_x:          -2.145352e-02
Almansi_strain_y:           4.444555e-01
Almansi_strain_z:          -3.791858e+00
elongation_Y:               3.000000e+01
eng_strain_x_from_Almansi: -2.078693e-02
eng_strain_y_from_Almansi:  2.000299e+00
eng_strain_z_from_Almansi: -6.586795e-01
engineering_strain_y:       2.000000e+00
engineering_stress_y:       7.139334e+00
lateral_contraction_x:     -7.410746e+00
reaction_force_y:          -3.569667e+02
true_stress_x:              1.015148e+00
true_stress_y:              1.070790e+01
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Influence of the Material Law (5)

Planar Test Case

The lateral contraction in the planar test is predicted completely different with the 
two different material models (results are in scale for a nominal stretch of λ=3)!
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Influence of the Material Law (6)

Conclusions: 

The difference in the lateral contraction cannot be explained with a different bulk 
modulus (means different Poisson ratios): For both models, since no volumetric 
tests have been performed, so the Di are set to Zero (internally D0=1/500 G0, this 
means the same Poisson ratio of 0.4995 is used both models) 

The Yeoh model neglects the second stretch invariant in the strain energy density 
function, just the first one is used, which may explain the difference
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function, just the first one is used, which may explain the difference

With this example, it becomes clear that the test conditions (uniaxial, planar…) 
highly influence the usability of test data for the analysis of the real design:
A simple tension test is often not enough for a good prediction of your real part 
behavior if this not loaded in simple tension as well!

In general, do as many different tests as possible to characterize your material! 

Especially use test conditions as close as possible to the loading state of the part 
you want to design!
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Thanks for your attention! 
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PTC Simulation Services Introduction

PTC Global Services provides services for our own simulation products:

– Pro/ENGINEER Mechanica as a FEA tool with p-method for structural mechanical, 
thermal and thermo-mechanical analysis

– Pro/ENGINEER MDX and MDO (Mechanism Design Extension and Mechanism 
Dynamics Option) for kinematic and dynamic multi-body simulations

The benefits are accomplished as following:

– Required calculations
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– Required calculations

– Development of the required analysis and optimization, working with the design team, 
directly on the working CAD data, including adoption of mechanical systems 
engineering tasks 

– On-site simulation consulting � Software and calculation method knowledge transfer

– Simulation training and workshops from PTC University

The following slides show the newest examples of simulation project and 
education references. Numerous other references from other clients and to other 
simulation issues can be provided upon request.



� During the development of new observation systems, Zeiss 
Optronics performs analyses to study the behavior of the 
installed subsystems for assuring that the final product 
works accurately. For the subsystem shown to the right, 
PTC Global Services was charged with these examinations

� PTC built up the dynamic analysis model in Mechanica 

BUSINESS INITIATIVE

PTC Global Services Examines the Dynamic Structural  Behavior of an Opto-Mechanical 
Subsystem Prototype from Carl Zeiss Optronics with Pro/ENGINEER® Mechanica ® Software

SOLUTION

Electronics & High Tech

Carl Zeiss Optronics GmbH, a member of the Carl Zeiss Group located in Oberkochen, Germany, develops and produces 
high-precision and robust opto-electronic systems for observation and defense purposes. For such products exposed to 
intense loading, advanced system analysis with the Finite Element Method is an integral part of the product development.
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“The dynamic analysis study gave us a very good und erstanding of exactly what happens in our newly des igned 
subassembly for moving lens elements. PTC’s respons ible consultant for the project, Dr. Roland Jakel, also 
provided excellent ideas for helpful design modific ations. With the obtained knowledge, we can now enh ance the 
subsystem in a very early stage of the development,  ensuring that it meets the requirements.”     

Dr.-Ing. Thomas Meenken, Team Leader Simulation, Ca rl Zeiss Optronics GmbH
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� PTC built up the dynamic analysis model in Mechanica 
with the help of given Zeiss Pro/ENGINEER CAD model 
assembly data. Reasonable linearizations were developed 
for the guiding system and the preloaded drive mechanism. 
Their validity was strictly controlled during all subsequent 
analyses. Given sine sweep test data was compared with 
the dynamic frequency analysis results to assure an 
accurate mathematical model of the subsystem

� Good match of test and analysis result data helped to 
understand the dynamic characteristics of the subsystem

� Points in the design leading to unwanted behavior 
could be identified and solutions were provided

RESULT

Top Left: The meshed Mechanica FEM model derived by PTC from the Zeiss 
Pro/ENGINEER data set, showing the p-elements and idealizations 

Top Middle: Pro/ENGINEER assembly model of the optical subsystem showing the 
dynamic test setup with several attached 3-axis acceleration sensors 

Bottom Left: A typical modal shape of the opto-mechanical subsystem attached to 
a linear roller bearing

Bottom Middle: Frequency response curves in the domain of interest showing good          
match of measured and analyzed accelerations (sine sweep test vs.
Mechanica dynamic frequency analysis)

Bottom Right: Integrated 1-sigma displacement response density functions allowing to 
judge  which frequencies deliver high fractions to the deposition of the 
optical group of interest (Mechanica random response analysis)



Otto Bock HealthCare is the leading supplier of innovative products for people with restricted mobility, and, as a recognized
system provider of high-quality, technologically advanced products and services, it is also the global leader in orthopedic 
technology. The company was founded in Berlin in 1919, and is now led by Professor Hans Georg Näder, the third-generation 
managing shareholder. In addition to the core competency as the leading company in the Orthobionic® field, Bionicmobility® is
an additional competency of Otto Bock. It combines mobility solutions such as high-quality lightweight and active wheelchairs, 
power wheelchairs, and products for pediatric rehabilitation and seating shell systems.

BUSINESS INITIATIVE
� The technologically advanced orthopedic products developed by 

Otto Bock require extensive Finite Element analyses to ensure  
proper function in service over their complete life span. 
For a more accurate solution of nonlinear problems like contact 
and fastener analyses, Otto Bock wanted to deepen the 

PTC University Further Educates Otto Bock HealthCar e in Advanced Nonlinear 
Contact and Bolt Analysis with Pro/ENGINEER ® Mechanica ® Software

Medical Devices
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and fastener analyses, Otto Bock wanted to deepen the 
knowledge of their design engineers in this demanding topic

� PTC offered an on-site workshop for these nonlinear analysis 
themes with the opportunity for Otto Bock engineers to get their 
typical product analysis tasks exemplarily solved by the PTC 
course instructor

� The theoretic background knowledge provided with help of the 
Otto Bock product examples supports the engineers in applying 
the Mechanica FEM code correctly to their analysis tasks 

SOLUTION

“We listened well to the background information PTC  provided in this course for frictionless and infin ite 
friction contact theory in Mechanica as well as to the extensive explanations about behavior of fasten ers. 
In addition, the example solutions provided help us  a lot since we can apply all this directly to our new 
products under development.” Ralf Allermann, Development / Design / Simulation, Otto Bock HealthCare GmbH 

RESULT

Right: The functional element of the Otto Bock 1C30 Trias prosthetic foot with 
carbon leaf springs and bolted connections containing typical simulation tasks 
treated in the advanced workshop

Top images : Fastener theory acc. to the German VDI 2230 guideline outlined 
extensively in the bolt analysis workshop

Bottom left: Pro/ENGINEER Mechanica model set-up with a carbon leaf spring 
bolted to an aluminum lever (one of several Otto Bock example tasks solved by PTC 
in the customized workshop)

Bottom middle: Mechanica analysis result of this model (comparative stress)



The Vaillant Group is an internationally operating heating, ventilation and air-conditioning technology concern based in 
Remscheid, Germany. As one of the world's market and technology leaders, the company develops and produces tailor-made 
products, systems and services for domestic comfort. The product portfolio ranges from efficient heating appliances based on 
customary fuels to system solutions for using regenerative energy sources. As Europe’s number one heating technology 
manufacturer, ‘thinking ahead’ is a culture which is embraced throughout their business. To ensure an excellent product quality 
and short development cycles, Vaillant uses modern CAE tools like CFD software or Mechanica as a Finite Element program. 

BUSINESS INITIATIVE
� During the product lifecycle, design modifications are often adopted 

to decrease manufacturing costs while maintaining or increasing 
product quality. Also here, FEM is used to ensure the reliability of 
such changes. The Mechanica software knowledge of the Vaillant
CAx application engineers was to be extended to advanced nonlinear 

PTC University Supports Vaillant in Advanced Nonlin ear Contact and Bolt 
Analysis with Pro/ENGINEER ® Mechanica ® Software

Consumer Products
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CAx application engineers was to be extended to advanced nonlinear 
simulation, so that very ambitious analysis tasks can be solved in-
house without external support

� PTC offered an individual simulation workshop focusing on contact 
and bolt analysis theory. Original Vaillant product examples and CAD 
data sets were used for practical training examples

� Obtained knowledge in nonlinear contact and bolt FEM analysis

� Obtained FEM sample solutions for typical Vaillant analysis tasks, 
like for the screw fitting shown right, allowing own further studies

SOLUTION

“Attending the advanced PTC training in Mechanica non linear contact and bolt analysis has enabled us to 
do these ambitious expert analyses in the future wi thout external support. We value the excellent 
knowledge transfer and the sample solutions accurat ely provided on base of our own products and 
simulation tasks.” Stefan Schweitzer-De Bortoli, CAx Application Engine er Simulation Tools, Vaillant GmbH

RESULT
Right image: A state-of-the-art Vaillant heating system for domestic comfort

Left images : Screwed joint analysis of a pipe connection with non-regular 
geometry, performed with Mechanica in the customized workshop: A hexagonal 
spigot nut (1) connects the copper tube end (2) with the brass tube (3), a sealing 
(4) is used against leakage of the fluid. Such bolted connections cannot be 
analyzed analytically acc. to bolt analysis guidelines because of their geometry; 
therefore Mechanica allows an accurate FEM analysis.

(1)    (3)    (4)    (2)



Dictionary Technical English-German (1) 

Most important terminology for German listeners:

bearing stress – Auflagerspannung

bulk modulus – Kompressionsmodul K = -∆p.V/∆V = E/(3(1-2ν))

coefficient of thermal expansion (CTE) – Wärmeausdehnungskoeffizient α

density – Dichte

dot (scalar) product – Skalarprodukt

hardness – Härte

modulus of elasticity – Elastizitätsmodul E

nominal (or engineering) strain – technische Dehnung ε = ∆l / l

nominal (or engineering) stress – technische Spannung σ = F / A0

poisson ratio – Querdehnzahl ν

principal axis transformation – Hauptachsentransformation
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Dictionary English-German (2) 

shear modulus – Schubmodul G = E/(2(1+ν))

strain – Dehnung ε

strain energy density function – Dehnungsenergiedichte-Funktion W 
(volumenbezogen)

stress softening – Entfestigung

stretch – Streckung, Längungstretch – Streckung, Längung

stretch invariants – Streckungsinvarianten I1, I2, I3
stretch ratio – Streckungsverhältnis λ = ε+1

tension strength – Zugfestigkeit

volumetric ratio – relative Volumenänderung J = ∆V / V
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Informations about the Presenter

Roland Jakel

Dipl.-Ing. for mechanical engineering (Technische Universität Clausthal)

Ph.-D. in design and analysis of engineering ceramics
(FEM-Analysis and subroutine programming with Marc/Mentat)

1996-2001 Employee at Dasa in Bremen (Daimler-Benz Aerospace, Product 
Division Space-Infrastructure, today EADS Astrium): 
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Division Space-Infrastructure, today EADS Astrium): 

– Structural simulation (FEM-Analysis with NASTRAN/PATRAN and Mechanica) 

– Project management for Ariane 5 Upper Stage „ESC-A“ Subsystems 
(Stage Damping System “SARO”, Inter Tank Structure)

At the former DENC AG („Design ENgineering Consultants“) from 2001-2005 
responsible for structural simulation services and education with the PTC 
simulation products (Mechanica, MDX, MDO, BMX)

Since the DENC AG acquisition by PTC in 2005, Roland Jakel is responsible 
for the PTC simulation services within the Global Services Organization (GSO) 
for CER (Central Europe)


