Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS

Sven D. Simeitis

04/2011

Fachhochschule Frankfurt am Main University of Applied Sciences

Gliederung

Einleitung

- Art um Umfang der Berechnungen
- MECHANICA (p-Methode)
- ANSYS (h-Methode)

Berechnungsbeispiele

- Rundstab mit U-förmiger Kerbe
- Balken mit konstanter Flächenlast
- Platte mit Bohrung

Zusammenfassung der Ergebnisse

Fragen / Diskussion

Art und Umfang der Berechnungen

- Berechnet wurden 10 Beispiele aus dem Bereich der Strukturmechanik
- · Bauteile wurden so gewählt, dass eine analytische Betrachtung möglich ist

Auszug aus den verwendeten Bauteilgeometrien

- · Analysen im linear-elastischen Bereich
- Berechnungen jeweils mit AEK und AMK (MECHANICA)
- Modelle jeweils mit einfachen und höherwertigen Elementen (ANSYS)
- Berechnungen wurden ggf. mit Volumen- und Scheiben- bzw. Schalenelementen durchgeführt
- Gegenüberstellung der numerischen Ergebnisse

MECHANICA University Edition WF5.0

In Pro/ENGINEER integriertes FE-Programm

- Grafische Bedienoberfläche / Iconbasiert
- Übernahme der Geometrie- und Materialdaten direkt aus dem CAD-Programm Pro/ENGINEER
- Analysen nach der "p-Methode"

Prinzip der "p-Methode"

Steigerung der Genauigkeit durch Erhöhen der Polynomordnung der Formfunktionen

• Wird von MECHANICA adaptiv gesteuert

Diskretisierung der Bohrung durch ein einziges p-Element möglich

MECHANICA University Edition WF5.0

Adaptive Einschritt-Konvergenz (AEK):

- Abschätzen des Fehlers anhand der ungeglätteten Elementspannungen nach dem ersten Rechendurchlauf (Polynomgrad 3)
- Anpassen der Polynomordnung an den jeweiligen Elementkanten
- Ausgabe des Ergebnisses nach dem zweiten Rechendurchlauf

Adaptive Mehrfach-Konvergenz (AMK):

- Vergleichen der Ergebnisse von zwei aufeinander folgenden Rechendurchläufen mit den Benutzervorgaben
- Anpassen der Polynomordnung an den jeweiligen Elementkanten vor dem nächsten Rechendurchlauf
- Dieser Vorgang wird wiederholt, bis die vom Benutzer festgelegten Konvergenzkriterien erfüllt sind

Elementspannungen, oben ungeglättet

ANSYS CLASSIC ED 11.0

Eigenständiges General-Purpose FE-Programm

- Grafische Bedienoberfläche / Kommandozeilenbasiert
- Import von Geometriedaten aus separaten CAD-Programmen möglich (z.B. IGES Format)
- Analysen nach der "h-Methode" und der "p-Methode"

Prinzip der "h-Methode"

Steigerung der Genauigkeit durch das Erhöhen der Elementanzahl

- Kann von ANSYS adaptiv gesteuert werden
- Manuelle Steuerung über das "Meshtool" möglich

Diskretisierung der Bohrung mit vier Elementen, mit 15 Elementen (rechts)

ANSYS CLASSIC ED 11.0

Scheibenelemente

Steigerung der Genauigkeit durch höherwertige Elemente:

- PLANE42 Element (lineare Formfunktionen)
- PLANE82 Element (quadratische Formfunktionen) → Bessere Diskretisierung irregulärer Bauteilgeometrien

Bauteildicke kann bei diesen Elementen im Elementansatz berücksichtigt werden

ANSYS CLASSIC ED 11.0

Steigerung der Genauigkeit durch höherwertige Elemente:

- SOLID45 Element (lineare Formfunktionen) → 8 Knoten, 3 Fre
- SOLID95 Element (quadratische Formfunktionen)
- → 8 Knoten, 3 Freiheitsgrade pro Knoten
- \rightarrow 20 Knoten, 3 Freiheitsgrade pro Knoten

Höherer Berechnungsaufwand bei Verwendung von Elementen mit quadratischen Formfunktionen

Rundstab mit U-förmiger Kerbe (Axialkraft)

Erstellen des FE-Modells (MECHANICA)

Einstellungen AutoGEM Steuerung:

- Max. Elementgröße 40mm (Komponenten)
- Max. Elementgröße 4mm (Fläche)
- Vernetzen mit Tetraederelementen

Einstellungen statische Analyse (AEK):

- Max. Spannungsfehler 8%, lokaler Spannungs-
 - Fehler 10%, Plotraster 4 (Werkseinstellung)

Einstellungen statische Analyse (AMK):

- Polynomgrad 1-9, Grenzwert 2% Konvergenz, Plotraster 4
- Konvergieren auf lokale Verschiebung, lokale Dehnungsenergie, RMS-Spannung

MECHANICA FE-Netz (links, ohne AutoGEM Vorgaben)

Berechnungsbeispiel (1)

Erstellen des FE-Modells (ANSYS)

Vernetzen der Querschnittsfläche:

- Vernetzen mit PLANE82 Elementen
- Unterteilung 18 Elemente (Länge)
- Unterteilung 4 Elemente (Radius)

Erzeugen des Volumenmodells:

- Rotation der Querschnittsfläche
- Unterteilung 6 Elemente pro 90°
- Volumenelemente (SOLID95) werden hierbei automatisch mit generiert

ANSYS FE-Netz (SOLID95 Modell)

Anmerkung: Die Abbildung zeigt das Modell des ersten Rechendurchlaufs → Netzverfeinerung notwendig

Numerische Ergebnisse

	MECHANICA		ANSYS	
Elemente	Tetraeder (AEK)	Tetraeder (AMK)	SOLID45	SOLID95
Anzahl	141	141	1056	984
CPU-Zeit [s]	1,33	3,56	2,78	4,78
Max. Verschiebung [mm]	3,50E-6	3,50E-6	3,49E-6	3,49E-6
Max. Spannung [MPa]	5,26E-2	5,22E-2	5,22E-2	5,13E-2

Maximale Spannung analytisch \rightarrow 5,06E-2 MPa

Relative Abweichung der numerischen und analytischen Ergebnisse für die max. Spannung:

Rel. Abweichung [%]	4,03	3,16	3,16	1,38
---------------------	------	------	------	------

• Geringe Abweichungen der numerischen Lösungen (Verschiebung, Spannung)

Farbplot der Verschiebung

Farbplot der Normalspannung

ANSYS (SOLID95)

• Gute Übereinstimmung in der Darstellung des Spannungsverlaufs

Balken mit konstanter Flächenlast

Analytische Berechnung über die DGL der Biegelinie:

Annahme: Die Schubspannungen sind wesentlich kleiner als die Biegespannungen und können daher vernachlässigt werden (max. Schubspng. / max. Biegespng. < 5%)

Erstellen des FE-Modells (MECHANICA)

AutoGEM Einstellungen:

- Kantenverteilung 12 Knoten / Intervall 1,0 (Länge)
- Kantenverteilung 3 Knoten / Intervall 1,0 (Breite)
- Vernetzen mit Tetraederelementen

Einstellungen statische Analyse (AEK):

 Max. Spannungsfehler 8%, lokaler Spannungs-Fehler 10%, Plotraster 4 (Werkseinstellung)

Einstellungen statische Analyse (AMK):

- Polynomgrad 1-9, Grenzwert 2% Konvergenz, Plotraster 4
- Konvergieren auf lokale Verschiebung, lokale Dehnungsenergie, RMS-Spannung

MECHANICA FE-Netz (oben, ohne AutoGEM Vorgaben)

Berechnungsbeispiel (2)

Numerische Ergebnisse (Verschiebung)

Farbplot der Verschiebung

Berechnungsbeispiel (2)

Numerische Ergebnisse (Biegespannung)

Farbplot der Biegespannung

MECHANICA (AMK)

ANSYS (SOLID95)

Gleichwertige Darstellung des Spannungsverlaufs

Platte mit Bohrung

Erstellen des FE-Modells (MECHANICA)

AutoGEM Einstellungen:

- Max. Elementgröße 8mm (Fläche)
- Vernetzen mit Tetraederelementen

Einstellungen statische Analyse (AEK):

 Max. Spannungsfehler 8%, lokaler Spannungs-Fehler 10%, Plotraster 4 (Werkseinstellung)

Einstellungen statische Analyse (AMK):

- Polynomgrad 1-9, Grenzwert 5% Konvergenz, Plotraster 4
- Konvergieren auf lokale Verschiebung, lokale Dehnungsenergie, RMS-Spannung

MECHANICA FE-Netz (oben, ohne AutoGEM Vorgaben)

Erstellen des FE-Modells (ANSYS)

Vernetzen der Querschnittsfläche:

- Vernetzen mit PLANE42 Elementen
- Erhöhen der Elementdichte im Bereich der Bohrung

Erzeugen des Volumenmodells:

- Extrudieren der Querschnittsfläche
- Unterteilung 2 Elemente (Breite)
- Volumenelemente (SOLID45) werden hierbei automatisch mit generiert

ANSYS FE-Netz (SOLID45)

Numerische Ergebnisse

	MECHANICA		ANSYS	
Elemente	Tetraeder (AEK)	Tetraeder (AMK)	SOLID45	SOLID95
Anzahl	64	64	398	294
CPU-Zeit [s]	1,03	2,09	2,29	3,16
Max. Verschiebung [mm]	7,87E-6	7,91E-6	7,89E-6	7,91E-6
Max. Spannung [MPa]	0,111	0,112	0,112	0,113

Maximale Spannung analytisch \rightarrow 0,108 MPa

Relative Abweichung der numerischen und analytischen Ergebnisse für die max. Spannung:

|--|

• Geringe Abweichungen der numerischen Lösungen (Verschiebung, Spannung)

Farbplot der Normalspannung

ANSYS (SOLID95)

• Der Spannungsverlauf wird von beiden Programmen gleichermaßen dargestellt

Zusammenfassung der Ergebnisse

Mittlere Abweichung zwischen numerischer und analytischer Lösung

Werte bezogen auf die maximale Spannung

14 Analysen	MECHANICA		ANSYS	
Elemente	Tetraeder (AEK) Tetraeder (AMK)		SOLID45	SOLID95
Ø Abweichung [%]	2,97	2,54	3,36	2,46

7 Analysen	MECHANICA		ANSYS	
Elemente	Schalen (AEK)	Schalen (AMK)	PLANE42	PLANE82
Ø Abweichung [%]	1,16	1,14	1,14	0,92

- Beide Programme erzielen bei den berechneten Modellen vergleichbare Resultate
- Geringer Unterschied zwischen AEK und AMK (max. Spannungen)

Zusammenfassung der Ergebnisse

Gesamt Berechnungsdauer

Angegebene Zeit ist die Summe der Berechnungsdauer aller Modelle

14 Analysen	MECHANICA		ANSYS	
Elemente	Tetraeder (AEK)	Tetraeder (AMK)	SOLID45	SOLID95
CPU-Zeit [s]	26,6	67,8	58,6	146,1

7 Analysen	MECHANICA		MECHANICA ANSYS	
Elemente	Schalen (AEK)	Schalen (AMK)	PLANE42	PLANE82
CPU-Zeit [s]	5,2	7,1	15,0	14,7

• MECHANICA benötigte zum Berechnen der Beispiele insgesamt weniger Zeit

• Wesentliche Zeiteinsparung bei Verwendung der AEK, insbesondere bei Volumenelementen

Anmerkung: CPU-Zeit entspricht der gesamt Berechnungsdauer auf allen Prozessorkernen und ist hier nur als Anhaltswert zu verstehen, da diese mit dem jeweiligen Auslastungsgrad des Systems variieren kann

Zusammenfassung der Ergebnisse

MECHANICA aus Sicht des Benutzers

- Kurze Einarbeitungsdauer (Übersichtliche Bedienoberfläche, Icon Basiert)
- Zügiges Arbeiten möglich (Preprocessing → Integration in CAD Programm)
- Unkomplizierte Bedienung z.B. beim Aufbringen von Momenten (Gesamtlast auf Punkt)

Vorteile der p-Methode:

- FE-Modelle enthalten weniger Elemente
- Das FE-Netz bleibt während der Konvergenzanalyse erhalten (kein Re-Meshing erforderlich)
- Vermeidung von Fehlern durch falsche Elementwahl (wenige unterschiedliche Elementtypen notwendig)

Ich bedanke mich für die Aufmerksamkeit und freue mich

auf Ihre Diskussionsbeiträge

Fachhochschule Frankfurt am Main University of Applied Sciences

Literatur / Angaben zum System

Literatur:

[1] Roark's Formulas for Stress and Strain 7th Edition; Warren C.Young, G. Bundynas;

McGraw-Hill 2002; ISBN: 0-07-121059-8

[2] ANSYS Release 9.0 Tutorial; Kent L. Lawrence;

SDC Publications 2005; ISBN: 1-58503-254-9

[3] Pro/MECHANICA Tutorial Structure Release 2001-Integrated Mode; R. Toogood;

SDC Publications 2001; ISBN: 1-58503-031-7-2

[4] ANSYS Release 11.0 Documentation

[5] Pro/ENGINEER Wildfire 5.0 Documentation

System:

Intel ® Core™ 2CPU, E8400/3.00GHz / 1,98GB RAM / Windows ® XP Professional SP3

