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Basic Introduction into Elasto-Plasticity 

Theoretical Foundations 
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ÁTrue elastic limit (1): 
ïThe lowest stress at which dislocations move 

ïHas no practical importance 

ÁProportionality limit (2): 
ïLimit until which the stress-strain curve is a straight line  

characterized by Young's modulus, E 

ÁElastic limit, yield strength or yield point (3): 
ïIs the stress at which a material begins to deform plastically, means non-reversible (this is the 

lowest stress at which permanent deformation can be measured) 

ïBefore the yield point, the material deforms only elastically and will return to its original shape 

ÁOffset yield point or proof stress (4): 
ïSince the true yield strength often cannot be measured easily, the offset yield point is arbitrarily 

defined by using the stress value at which we have 0.1 or 0.2 % remaining strain. It is therefore 

described with an index, e.g. Rp0.2 for 0.2 % remaining strain like shown in the image 

Elasto-Plastic Material Basics (1) 

The elasto-plastic stress-strain curve 
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A typical stress-strain curve 

for non-ferrous alloys [1] 
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ÁIn stress-strain curves, usually the 

engineering stress s=F/A0 vs. 

engineering strain e=Dl/l0 is shown 

ÁIf the material shows significant 

plastic behavior, the engineering 

stress s decreases when the 

specimen shows necking 

ÁThe true stress s*=F/A still 

increases, since there is a 

significant local reduction of area 

like shown in the right image 

ÁIn many practical applications (up to 

º 5 % elongation), the difference is 

negligible 

Elasto-Plastic Material Basics (2) 

Engineering and true stress  
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Stress-strain curve of a typical soft steel 

with engineering stress s and true stress s* 

vs. engineering strain, modified from [3] 
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ÁBrittle material (a) shows rupture in 

the plane of the maximum principal 

stress s1 

ÁDuctile material (b) shows a crater-

shaped shear fracture under 45° to 

the maximum principal stress plane 

near the specimen surface.  

ÁWithin the specimen, a brittle 

fracture shape can be observed, 

since inside the necked area we 

have a multiaxial stress state (c) 

with an acc. to [3] approximately 

equal axial, radial and tangential 

stress, which prevents yielding 

Elasto-Plastic Material Basics (3) 

Fracture shapes in uniaxial specimens 
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Fracture shapes and stress state in an 

uniaxial test specimen, modified from [3] 

a) b) c) 
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ÁHardened steel,  

e.g. for spring applications (1) 

ÁTempered steel (2) 

ÁSoft steel (3) 

ÁAlCuMg, hardened (4) 

ÁGray cast iron GG 18 (5) 

 
 

Elasto-Plastic Material Basics (4) 

Typical uniaxial stress-strain curves [3] 
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Shown is engineering stress 

versus engineering strain! 
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ÁProportionality limit and elastic limit 
ïNote that for typical elasto-plastic material, there is often not a 

big difference between these two limits (points 2/3) 

ï In opposite, for elastomers, such as rubber which can be 

idealized as hyperelastic, there is a big difference between 

these points: These have an elastic limit much higher than the 

proportionality limit, and an elastic limit is not specially taken into 

account in the hyperelastic material formulation 

ÁCompressibility and Poisson effect 
ïElastic strains in elasto-plastic materials usually appear with 

volume changes, the Poisson ratio is <0.5, e.g. 0.3 

ï In general, plastic flow of metals occurs without volume change. 

Mathematically, this means the Poisson ratio for plastic strains is 

0.5 and epxx+epyy+epzz=0 

ï In opposite to this behavior, hyperelastic material does not 

change its compressibility during loading, so as Wildfire 4 user 

you should never try to ñapproximateò any elasto-plastic material 

curve with the hyperelastic model! 

Elasto-Plastic Material Basics (5) 

Comparison of elasto-plastic and hyperelastic material 
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A typical stress-strain curve for 

non-ferrous alloys [1] 
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Hyperelastic material 

stress-strain curve [2] 
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ÁThe material laws are a one dimensional relation 

of stress versus plastic strain 

ÁCreo Simulate supports four material laws for 

describing plasticity: 
ïelastic ï perfectly plastic: Above the yield limit the stress 

(sy=syield=yield stress) is constant independently of the 

plastic strain reached (a special case of the linear hardening 

model with Em=0) 

ïĂLinear hardeningñ: The relation between stress and plastic 

strain is constant (Ătangent modulusñ Em with slope 0<Em<E) 

ïPower (Potential) law: 0<Em<E, 0<mÒ1 

ïExponential law: 

m>0, slimit >0 

Elasto-Plastic Material Laws in Simulate (1) 

Implemented Material Laws 
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ÁThis coefficient takes into account that the yield strength of a material falls 

with increasing temperature. It is regarded as a constant material parameter 

and allows to take into account temperature influence when analyzing 

plasticity. It is valid for all plasticity models supported. 

ÁThe coefficient of thermal softening b is defined in Simulate as follows: 

 

ÁHerein, Y0 is the material yield strength entered in the material definition 

dialogue (Simulate assumes this is for the reference temperature T0), and b 

(dimension 1/temperature) is the coefficient of thermal softening. Y1 is the 

yield strength at the model temperature T1. 

ÁNote: In order to prevent a negative yield stress, the condition b*(T1 - T0)<1 

must be fulfilled! The engine issues an error and stops if this appears. 

Elasto-Plastic Material Laws in Simulate (2) 

Coefficient of thermal softening ï CTS (1) 
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ÁIn [6], there is a more general formulation of the thermal softening, which is 

based on the power (potential) plasticity law and also takes into account the 

strain rate (loading speed): 

 

ÁHerein, we have 5 material parameters A, B, n, C, m. 

Á                 is the dimensionless plastic strain rate for                    [6].  

T* is the homologous temperature, and s the von Mises flow stress. 

Expressed in formula letters more common in this presentation, we obtain 

 

 

ÁSo, the CTS used in Simulate is a linearization of the temperature function 

given above, which is good for most cases. The strain rate has to be taken 

into account directly by modifying the material law parameters, if required. 
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Elasto-Plastic Material Laws in Simulate (3) 

Coefficient of thermal softening (2) 
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ÁThe influence of thermal softening is depicted in [6] for various materials 

Elasto-Plastic Material Laws in Simulate (4) 

Coefficient of thermal softening (3) 
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ÁSimulate can automatically select the material law from linear least squared 

best-fit, if the user enters uniaxial tension test data 

ÁManual selection/input is possible, too 

Defining Elasto-Plastic Material Laws ï Curve Fitting (1) 

Stress-strain curves for materials beyond the elastic limit can be defined by tests 

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 
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ÁThe following slides show what happens behind the Simulate user dialogue 

when material test data is input  

ÁIf we have an equation 

 

 

then the coefficients a and b can be evaluated from the following equations: 

 

 

 

 

ÁHere, n is the number of data points, (xi, yi) is the data pair and the 

summation goes from 1 to n 

Defining Elasto-Plastic Material Laws ï Curve Fitting (2) 

Isotropic hardening laws using linear least squared fitting algorithm [4] 
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ÁLinear plasticity 

 

 

or: 

 

 

 

Here: 

Defining Elasto-Plastic Material Laws ï Curve Fitting (3) 

Application of linear least squared fitting algorithm to isotropic hardening laws [4] 
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ÁPower (potential) plasticity law 

 

 

or: 

 

Taking logs on either side to the base e: 

 

 

Here: 

 

Defining Elasto-Plastic Material Laws ï Curve Fitting (4) 

Application of linear least squared fitting algorithm to isotropic hardening laws (contôd) 
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ÁExponential plasticity law 

 

 

or: 

 

 

Taking derivatives on either side, with respect to X: 

 

 

 

Taking logs on either side to the base e: 

 

 

Defining Elasto-Plastic Material Laws ï Curve Fitting (5) 

Application of linear least squared fitting algorithm to isotropic hardening laws (contôd) 
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ÁThen, we obtain: 

 

 

 

 

 

 

 

After evaluating m (from b),  

we can evaluate B (from a) 

 

Defining Elasto-Plastic Material Laws ï Curve Fitting (6) 

Application of linear least squared fitting algorithm to isotropic hardening laws (contôd) 
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ÁThe material laws are a one dimensional relation of stress versus plastic 

strain. Only uniaxially tension loaded specimens are used for characterizing 

the elasto-plastic material behavior, where we have one yield point only. 

ÁIn the three-dimensional space of the principal stresses (ů1, ů2, ů3), an 

infinite number of yield points form together the yield surface. 

ÁIn real structures, we usually have biaxial stress states at the surface and  

ï more or less ï three-axial stress states within the structure. Hence, we 

need a suitable criteria to form an equivalent uniaxial, scalar comparative 

stress, called the yielding condition or yield criteria. 

ÁIn literature, several different yield criteria can be found for isotropic 

materials. 

ÁThe subsequent slide shows only the most popular criteria for yielding of 

isotropic, ductile materials. 

Multi-Axial Plasticity (1) 

Yield point and yield surfaces 
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ÁMaximum Shear Stress Theory (Tresca yield criterion) 
ïYield in ductile materials is usually caused by the slippage of crystal planes along the maximum 

shear stress surface.  

ïThe French scientist Henri Tresca assumed that yield occurs when the shear stress exceeds the 

uniaxial shear yield strength tys:  

 

 

ÁDistortion Energy Theory (von Mises yield criterion) 
ïThis theory proposes that the total strain energy can be separated into two components: the 

volumetric (hydrostatic) strain energy and the shape (distortion or shear) strain energy. It is 

assumed that yield occurs when the distortion component exceeds that at the yield point for a 

simple tensile test. The hydrostatic strain energy is ignored. 

 

 

ïBased on a different theoretical derivation it is also referred to as ñoctahedral shear stress theoryò 

ïSimulate supports this yield criteria only, since it is most commonly used and often fits with 

experimental data of very ductile material 

Multi-Axial Plasticity (2) 

Classical isotropic yield criteria 
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ÁIn the three-dimensional space of 

the principal stresses (ů1, ů2, ů3), an 

infinite number of yield points form 

together the yield surface. If the 

stress state is within this surface, no 

yielding appears. 

ÁThe most popular criteria, Tresca 

and von Mises, 

 

 

 

 

look like shown right 

ÁThe von Mises yield surface is 

therefore called the ñyield cylinderò 

 

Multi-Axial Plasticity (3) 

Graphical representation of classical criteria 
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ÁGeneralized Isotropic Yield Criterion (Hosford) 

 
 

 

ïExperimental and theoretical data on yielding under combined stresses can be described by a 

single parameter, n, with 1 Ò n Ò ¤ 

ïFor n=2, this equals the von Mises criterion 

ïThis criterion was proposed in 1972 by W. F. Hosford, Department of Materials and Metallurgical 

Engineering, The University of Michigan, Ann Arbor, Mich [7] 

 

ÁMore criteria and deeper information can be found e.g. in [8] and [9] 

Multi-Axial Plasticity (4) 

Other Isotropic yield criteria 
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ÁComparison of different popular criteria [9] 

 

 

 

 

 

 
 

 

a. IF-steel 

b. LC-steel 

c. Aluminum alloy 

Multi-Axial Plasticity (5) 

Graphical representation of some other isotropic yield criteria 
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ÁNote the von Mises yielding condition must always be satisfied: 

 

ÁThis has some consequences, e.g.: 
ïIn a uniaxial stress state, the yield stress and the maximum principal stress will  always be the 

same ï the maximum principal stress can never by greater than the von Mises stress! 

ïIn a biaxial stress state, it may happen that one or more principal stresses may well be above or 

below the uniaxial yield stress, so do not be surprised! 

ïIn equi-triaxial tension, yielding will never appear, since the principal stress differences are zero. 

The material will break if the principal stress reaches ultimate stress, while the von Mises stress 

will still be zero. A ductile material will behave brittle in this case, that means rupture appears 

suddenly without previous yielding! 

ÁIn the following slides, we will examine some characteristic stress states 

with a small demonstration model for better understanding 

Examination of Typical Stress States (1) 

Von Mises Stress and Principal Stresses 
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ÁWe use a unit volume with symmetry 

constraints 
ïLoads can be applied with forces or enforced 

displacements in all principal directions 

ïThe mesh consists of one p-brick only 

ïWe have created measures for stress (true and 

engineering) and strain (log and engineering), equivalent 

plastic strain, reaction forces and absolute volume  

ÁNote: 
ïSimulate uses exactly n=0.5 for plastic (incompressible) 

strains, not 0.4995 like for incompressible hyperelastic 

material 

ïIn hyperelasticity, 0.5 can lead to ñdilatational lockingò, 

where the mesh acts too stiff for numerical reasons, and 

0.4995 fixes that. This problem does not occur in 

plasticity. 

Examination of Typical Stress States (2) 

Demonstration model 
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ÁSimple linear hardening and perfect plasticity 

model used 
ïVery soft model steel with  

ÅE=200000 MPa 

ÅYield strength = 100 MPa 

ÅElastic Poisson ratio = 0.3 

ÅTangent modulus (linear hardening only) = 2000 MPa 

ïAt its yield strength, the strain should be  

 

 

ïThe lateral strains are: 

 

 

ïAt the yield strength, the unit volume of V0=1 mm3 

increases  to 

 

ïAll subsequent analyses performed in LDA 

 

Examination of Typical Stress States (3) 

Material model used 
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ÁPerfect plasticity results 
ïAxial stress stays constant at 100 MPa after yielding 

ïVolume does not further increase when material yields, like expected 

Examination of Typical Stress States (4) 

Uniaxial Tension 
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ÁLinear hardening results 
ïAxial stress = 1st principal stress increases with factor 100 reduced slope after yielding 

ïVolume further increases when material yields: Elastic strain increases because stress 

increases during yielding, too! (Note: Analysis was performed in LDA, since SDA cannot  

capture this volume change very accurately) 

Examination of Typical Stress States (5) 

Uniaxial Tension 
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ÁWe load the volume with the uniaxial yield limit 

strength:   
ïVon Mises stress vs. equivalent plastic strain reflects the 

uniaxial linear hardening material input curve, like expected 

 

Examination of Typical Stress States (6) 

Pure Torque (1) 
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ïThe max. and min. principal stresses (= x and y-stress) 

show yielding much below the uniaxial yield strength of 

100 MPa! 

 

Examination of Typical Stress States (7) 

Pure Torque (2) 
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ïThe volume should not change for this loading state, just 

small numerical disturbances 

ïStrain energy increases dramatically after von Mises stress 

reaches yield limit of 100 MPa 

 

Examination of Typical Stress States (8) 

Pure Torque (3) 
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ïThis biaxial, plane stress state allows to load the material 

well above the uniaxial yield limit without yielding! 

ïJust above s1 = sx = 115 MPa yielding takes place,  

15 % above the unixial limit 

 

Examination of Typical Stress States (9) 

Biaxial tension ratio: s1 = 1.2 Y0; s2 = 0.5 Y0; s3=0 
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ïThe graph Y-Stress vs. Y-strain shows a sharp bend, since 

negative incompressible Y-strain prevails after yielding! 

ïThe von Mises stress vs. X-strain shows the uniaxial 

material behavior, like expected 

 

Examination of Typical Stress States (10) 

Biaxial tension ratio: s1 = 1.2 Y0; s2 = 0.5 Y0; s3=0 
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ÁWe load all directions, e.g. 
ïYielding never appears, since all principal stress differences are zero 

ïIn equitriaxial tension, the ductile material will suddenly break brittle 

when ultimate strength is reached, without previous yielding 

ïUnder hydrostatic pressure, yielding or even rupture in general will not 

appear under practical achievable pressures 

 

Examination of Typical Stress States (11) 

Equitriaxial tension 
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ÁBauschinger effect 
ïIf a metallic material is loaded above its yield strength and 

the load is reversed, its yield strength in the reversed 

direction becomes reduced 

ïThis effect was described by Johann Bauschinger  

(1834-1893, Prof. for engineering mechanics at the  

Munich Polytechnikum) 

ïThe analogous model for this effect is shown right below:  

It consists of a spring K1 representing the elastic material 

behavior. In serial connection to K1 , there is a friction 

element FR and another spring K2 (usually K2 << K1) in 

parallel connection  

Hardening Models (1) 

Basics of material hardening 
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ÁKinematic hardening (Bauschinger effect) 
ïIdeal kinematic hardening means that the yield surface of 

the yield law is just offset, its size remains unchanged 

ïThe yield limit is constant, just the midpoint ñmò of the yield 

locus changes 

ÁIsotropic hardening 
ïFor ideal isotropic hardening, the direction of the loading 

does not influence the yield limit 

ïHere, the yield surface simply expands if the material is 

loaded above yield 

ÁIsotropic kinematic hardening 
ïIn reality, usually both models have to be combined to 

describe the material behavior.  

ïThe Bauschinger number describes the relation of kinematic 

and isotropic hardening 

Hardening Models (2) 

Basics of material hardening 
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Opportunities & Limitations 

Tips & Tricks 

Applying Simulate to Elasto-Plastic Problems 
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Part II 
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ÁIsotropic hardening 
ïCreo Simulate supports isotropic 

hardening only, therefore currently the 

Bauschinger effect cannot be described 

ÁExample 
ïSimple linear hardening material used 

ÁLoad history: 

Isotropic Hardening (1) 

Application in Creo Simulate (1) 
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ÁCyclic Loading 
ïSince currently only isotropic hardening is supported, 

cyclic loading especially with the linear hardening or 

Power law is not realistic, because the material will 

ñharden until infinityò. 

ÁPreferred Material Model 
ïIn this case, approximate with perfect plasticity or 

exponential hardening law (both have an upper limit). 

ÁLoad history 

Isotropic Hardening (2) 

Application in Creo Simulate (2) 
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ÁPlastic material laws and test data 
ïWhen entering the elasto-plastic material/test data into the data dialogue, note that you have to 

enter engineering stress vs. engineering plastic strain for SDA and true stress vs. logarithmic 

plastic strain for LDA. Subtract the elastic strain from the total strain to get the plastic strain 

required for input. Note the curves start with the yield limit stress, not at zero! 

ïFor all material laws except of perfect plasticity, the entered stress must be a strictly monotonic 

function of the engineering strain. A decrease of engineering stress at higher strains cannot be 

described in a SDA (see example 1 of part III for further details). 

ïOnly the exponential plasticity law allows to define an upper limit of plastic stress, which is 

approached asymptotic! 

ïThe material laws do not allow to calculate (accidently) necking under high loads in the plastic 

domain, if there is no imperfection in the model; so they do not allow to predict where failure will 

really appear (see again example 1 of part III for further details). 

ÁStress and strain output 
ïNote that Simulate will output engineering stress and strain in plasticity only if ñcalculate large 

displacementsò (=LDA) is not activated. If an LDA is performed, since Creo 1.0 Simulate outputs 

logarithmic strain and true stress (until Wildfire 5, output is Almansi (Eulerian) strain). 

Working with Material Laws in Simulate (1) 

What do I have to take care about when I use a material law within Simulate? 
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Working with Material Laws in Simulate (2) 

Graphical representation of different strains [2]: 
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Reported since Creo Simulate in LDA: Logarithmic strain 

(also called ñnaturalò, ñtrueò, or ñHenckyò strain), 

obtained by integrating the incremental strain: 

Reported until Wildfire 5 in LDA: Almansi Strain 
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ÁLiterature separates between ñsmall strainò 

and ñfinite strainò plasticity 
ïIn small strain plasticity, just small deformations are 

allowed and the total deformations as well as the 

deformation increments are additively split into an  

elastic and plastic part, e= ee+ep. This assumption is 

valid for strains up to a few percent, then it becomes 

inaccurate 

ïIn finite strain plasticity theory, the deformation 

gradient is split multiplicatively into an elastic and a 

plastic part. This allows to treat problems with very 

large deformations, like forging processes. 

ïThe mathematical methods especially of finite strain 

plasticity are very ambitious and far beyond the 

scope of this presentation. 

Small Strain and Finite Strain Plasticity (1) 

Small and finite strain plasticity 
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ÁCreo Elements / Pro Mechanica WF 5.0 supports small strain plasticity 
ïHere, the relation between total strain and displacement is linear: Strains are output as 

engineering values.  

ïPlasticity is limited to SDA (small displacement analysis) only, LDA  (large displacement 

analysis) therefore is not supported in this release 

ÁCreo Simulate 1.0 and 2.0 also support finite strain plasticity: 
ïFinite strain is implemented for 3D models if LDA is activated. 

ïIn this case, the plastic (and elastic) strain is output as logarithmic strain: Simulate computes 

incremental strain at each load step and then integrates it to get total strain. This ends up with 

strain being logarithmic (see slide 42). 

ïFor 2D models (plane stress, strain & axial symmetric), still just small strain plasticity is 

supported. So if LDA is used with these model types even though, e.g. in combination with a 

contact analysis, hyperelastic material, or nonlinear spring, Simulate issues a warning if the 

strain becomes > 10 % 

ïInternally, the engine still uses large displacement calculations in this case, but the strain 

calculations in the 2D elasto-plastic elements themselves are small strain. 

Small Strain and Finite Strain Plasticity (2) 

Mechanica WF 5.0 and Creo Simulate differ in plasticity models 
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ÁWhat can I do if a need finite strain calculations, but have a 2D problem?  
ïIn these cases (plane stress, plane strain or axial symmetric models), built up your model as  

3D segment with a small angle or thin slice using appropriate constraints and mesh controls 

ïExample: An axial symmetric problem as 2D axial symmetric and as 3D segment model: 

 

 

 

 

 

 

 

 

 

 

 

ïPlane strain models can be set up by using just one layer of elements over the constant ñsliceò 

thickness and use mirror symmetry constraints at the slice cutting surfaces, see [10]. 

Small Strain and Finite Strain Plasticity (3) 

Performing finite strain analyses  

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1 

 


