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Elasto-Plastic Material Basics (1) PTC

Theelasteplastic stresgrain curve
A True elastic limit (1):

I The lowest stress at which dislocations move
I Has no practical importance

F/A

a‘:

A Proportionality limit (2):

i Limit until which the st#smn curve is a straight line

059{? e=lL g
characterized by Young's modulus, E A typical stress-strain curve
for non-ferrous alloys [1]
A Elastic limit, yield strength or yield point (3):

i Is the stress at which a material begins to deform plasticallyreveasibladthis is the
lowest stress at which permanent deformation can be measured)

I Before the yield point, the material deforms only elastically and will return to its ori
A Offset yield point or proof stress (4):
I Since the true yield strength often cannot be measured easily, the offset yield poir

defined by using the stress value at which we have 0.1 or 0.2 % remaining strain.
described with an index, ggfét 0.2 % remaining strain like shown in the image
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Elasto-Plastic Material Basics (2) PTC

Engineering and true stress

; _ 800
A In stress-strain curves, usually the = " ,
engineering stress s=F/A, vs. = j
engineering strain e=Dl/l, is shown 0 A<Ag /
600 | /
L)/

A If the material shows significant
plastic behavior, the engineering

stress s decreases when the 400
specimen shows necking \
A The true stress s*=F/A still 200 A elongation elongation

without necking | with necking

Increases, since thereis a
significant local reduction of area

like shown in the right image e (%]

0 ] | | T
0 5 10 15 20 25

A In many practical applications (up to _ |
Stress-strain curve of a typical soft steel

° 5% elongation), the difference Is with engineering stress s and true stress s*
negligible vs. engineering strain, modified from [3]
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Elasto-Plastic Material Basics (3) PUC

Fracture shapesumaxiadpecimens

A Brittle material (a) shows rupture in
the plane of the maximum principal
stress s,

A Ductile material (b) shows a crater-
shaped shear fracture under 45° to
the maximum principal stress plane
near the specimen surface.

A Within the specimen, a brittle
fracture shape can be observed,
since inside the necked area we
have a multiaxial stress state (c)
with an acc. to [3] approximately a) b) c)
equal aXIa.I’ radial and tafnge.ntlal Fracture shapes and stress state in an
stress, which prevents yielding uniaxial test specimen, modified from [3]
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Elasto-Plastic Material Basics (4)

Typicaliniaxiadtressstrain curves [3]2200-

A Hardened steel,
e.g. for spring applications (1)

A Tempered steel (2)
A Soft steel (3)
A AICuMg, hardened (4)

A Gray cast iron GG 18 (5)

Shown is engineering stress
versus engineering strain!
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Elasto-Plastic Material Basics (5)

Comparison effasteplastic ankyperelastmaterial

A Proportionality limit and elastic limit

=

Note that for typieklsteplastic material, there is often not a $

big difference between these two limits (points 2/3) 5
In opposite, felastomersuch as rubber which can be
idealized dsyperelastithere is a big difference between

these points: These have an elastic limit much higher thar

PTC

L

proportionality limit, and an elastic limit is not specially tak... ...
A typical stress-strain curve for

non-ferrous alloys [1]

account in thgperelastimaterial formulation

A Compressibility and Poisson effect

Elastic strainsafasteplastic materials usually appear with
volume changes, the Poisson ratio is <0.5, e.g. 0.3

In generaplastic floaf metals occurs without volume change.
Mathematically, this means the Poisson ratio for plastic strai
0.5 and,+ gyt £70

In opposite to this behalygerelastimaterial does not

change its compressibility during loading, so as Wildfire 4 us

Géa«’{? e=lL

(9

15 isQ/
>
—

€

you shoul d nev e reladtgolagtic maierial a |

pr OX i mat eao

gny

curve with thyperelastimodel!
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Elasto-Plastic Material Laws in Simulate (1) PTC

Implemented Material Laws °

A The material laws are a one dimensional relation o=0,
of stress versus plastic strain o,

A Creo Simulate supports four material laws for

describing plasticity: 5
i elasti¢ perfectly plastic: Above the yield limit the’stress °

(Sy=S,ieigYield stress) is constant independently of the o=0, + E,.€,
plastic strain reached (a special case of the linear har
model with =0) %

i ALinear hardeningi: Th%e I t
strain is c¢on sBwithdlope@<E)a n S

I Power (Potential) lavE S<E , d1 ]

I Exponential law: o G\gm\

rT‘>O’Slimit>o NL\ /7 o=0, + E,, ()"
O, + Oy 0=0, + Ojnyl1- exp CMEp)]

Gy
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Elasto-Plastic Material Laws in Simulate (2) PTC

Coefficient of thermal softér@igs (1)

A This coefficient takes into account that the yield strength of a material falls
with increasing temperature. It is regarded as a constant material parameter
and allows to take into account temperature influence when analyzing
plasticity. It is valid for all plasticity models supported.

A The coefficient of thermal softening b is defined in Simulate as follows:
Y, =Y, @@- £0T) =Y, dL- £(T;- 1))

A Herein, Y, is the material yield strength entered in the material definition
dialogue (Simulate assumes this is for the reference temperature T,), and b
(dimension 1/temperature) is the coefficient of thermal softening. Y, is the
yield strength at the model temperature T,.

A Note: In order to prevent a negative yield stress, the condition b*(T, - T,)<1
must be fulfilled! The engine issues an error and stops if this appears.
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Elasto-Plastic Material Laws in Simulate (3) PTC

Coefficient of thermal softening (2)

A In [6], there is a more general formulation of the thermal softening, which is
based on the power (potential) plasticity law and also takes into account the
strain rate (loading speed).

={A+Be"f{1+Cln & }{1- T*"} T* =
A Herein, we have 5 material parameters A, B, n, C, m.

a T TRoom

T~ T

Melt ~ '"Room=

OO

A & = & & is the dimensionless plastic strain rate for & =1.0s ' [6].
T* Is the homologous temperature, and s the von Mises flow stress.
Expressed in formula letters more common in this presentation, we obtain

* A

Y, ={s, +Eq(e )}1+Cln%ﬂ?1-a-r T, §ﬂ

A4

, i Vi Clver~ To= §,

A So, the CTS used in Simulate is a linearization of the temperature function
given above, which is good for most cases. The strain rate has to be taken
Into account directly by modifying the material law parameters, if required.

Y, =Y, @- o0T)=Y,d@- H(T,- T,))
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Elasto-Plastic Material Laws in Simulate (4)

Coefficient of thermal softening (3)

A The influence of thermal softening

TRUE TENSHE STRESS tMPa)

) ' - - ' . .
m - \ y
o5 ~ . —_ROOM
v " TveLr * Troom
1o0q = / i HOA — 1]
’fﬂt-i‘zﬁ.— e [ W2
/{;_, —
m/ . T THERMAL SOFTENING DATA
// TAKEN AT THESE STRAINS
| i
600 - ARMCO IRON
///‘—‘—m—u"l"' : —
. X i 1 : ‘131 1* =0
¢ T mee Tt W
x- J AR AR FOY
QFHC_COPPER S
% K % 15 20 % 3% g7

TRUE TENSILE STRAIN, 21{n [dy/d)
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Is depicted in [6] for various materials
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Defining Elasto-Plastic Material Laws i Curve Fitting (1) PTC

Stressstrain curves for materials beyond the elastic limit can be defined b

A Simulate can automatically select the material law from linear least squared
best-fit, if the user enters uniaxial tension test data

Material Definition =]
s . . . . MName
A Manual selection/input is possible, too JacRTN1S PLASTI |
Description
| E-Modul reduziert auf 200000 bei ca. 350 * |
Plastic Hardening Law Definition
Test Edit Graph DensityI 7.7e-09 | tonne/mm"3 '|
D |—u o=, E éﬁ ; El Q @ = Structural | Thermal ' Miscellaneous | App User Defined
- z z Symmetrﬂ Isotropic '|
Test T . . Show Best Fit Material Model Curves
v est1 : Uniaxial T, R
Type . % SUBERL Stress-Strain Response| Elastoplastic '|
} 440,00 % [¥] Linear Hardening 0.00166289 ) S
Plastic Str.. Stress ] Power Law $ 2804260-14 | Poisson's Ratia| 0.3 ' |
248 420.00 ] & (V] Expanential Law NiA Young's Modulus | 200000 [| Pa M
. ¥— || o—
0.002 230 e 400.00 . | o— Coeff. of Thermal ExpansionI 1e-05 I| Ic '|
018 430 S ) )
% i — Select Hardeninglaw ———————————————————— Mechanisms Da al ll sec/mm '|
= 350,00 _ i i v . . ——
% 380.00 7 ‘! Linear Hardening ! . " Hardening Law |
I g V4 - ; ;
& 36000 _| / Linear Hardening 4 Define ElyTests| Edit |
B / Use Best Fit Coefficients
€ a0.00 / Tensile Yield Stress| 248 [wPa \ | )
3 T e [ Il Tangent Modulus
2 i Tangent Modulus | 1005.49 MPa \\
320,00 | ff. of Thermal Softening| 0 [ 1 4 -
i) .
= 1 e — Material Limt .
o 300,00 _| 4 . .
£ | Tensile Yield Stress * |
5 280,00 / Tensile Ulimate Stress | 428 989 [ mPa v
- 180.00
. / Compressive Ultimate Stress [ I| MPa '|
260.00 — *Required Fields
240.00 N — Failure Criterion 1
LN LI DL L L LA L DL L | Distortion Eneray (von Mises) -

0.00 0.02 0,04 0.06 0.08 010012 0.14 016 0.18

- MNominal (Engineering) Plastic Strain
MPa - | None ]

| Cancel | Ok

— Fatigue Y

Cancel |
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Defining Elasto-Plastic Material Laws T Curve Fitting (2) PU1C

Isotropic hardening laws using linear least squared fitting algorithm [4]

A The following slides show what happens behind the Simulate user dialogue
when material test data is input

A If we have an equation
y =a+bx

then the coefficients a and b can be evaluated from the following equations:

_ay@x-ax@xy

a

nd % - (& xJ
,=axg-ax@y

e o (= V2

nd x- (& x)

A Here, n is the number of data points, (x,, Y, is the data pair and the
summation goes from 1 to n
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Defining Elasto-Plastic Material Laws T Curve Fitting (3) P1U1C

Application of linear least squared fitting algorithm to isotropic hardening
A Linear plasticity
s=s,tE. €,
or:  Y=A+BX

Y- A=BX
Here: Y=Y - A o
a=0 o=0,+E.g,
b=B
X=X g,




Defining Elasto-Plastic Material Laws T Curve Fitting (4) PUC

Application of |l inear | east sqgua

A Power (potential) plasticity law
_ m
s=s,+E,le)

or: 'Y =A+BX"

Taking logs on either side to the base e:
log.(Y - A)=log, B+mlog, X

g
Here: y= Ioge(Y— A)
a=log,B o=0, +E, (g,)"
b=m
Uhf
X=log, X
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Defining Elasto-Plastic Material Laws T Curve Fitting (5) PU1C

Application of |l inear | east sqgua
A Exponential plasticity law
s =5,+S,(L- expl- me)))
or: Y = A+B(1- exp(- mX))
Y- A=B- Be™

Taking derivatives on either side, with respect to X:

d(y - ):mBe'mx
dX o

Taking logs on either side to the base e: K
|OQe d(Y - A) = IOge(m B) - mX Oyt Ojimit 0=0, + Oy 1- exp TME)]
dX
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Defining Elasto-Plastic Material Laws T Curve Fitting (6) PU1C

Applicati on

A Then, we obtain:

adlyY - A)o
y_logef (dX )2
a=log,(mB)
b=-m
X=X

After evaluating m (from b),
we can evaluate B (from a)

OyF Ojimit

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1
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east squa

0=0, + Ojmi 1- €Xp (=mep)
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Multi-Axial Plasticity (1) PTC

Yield point and yield surfaces

A The material laws are a one dimensional relation of stress versus plastic
strain. Only uniaxially tension loaded specimens are used for characterizing
the elasto-plastic material behavior, where we have one yield point only.

Alnthethree-d i mensi onal space of ,thi)dEmrin
infinite number of yield points form together the yield surface.

A In real structures, we usually have biaxial stress states at the surface and
I more or less 1 three-axial stress states within the structure. Hence, we
need a suitable criteria to form an equivalent uniaxial, scalar comparative
stress, called the yielding condition or yield criteria.

A In literature, several different yield criteria can be found for isotropic
materials.

A The subsequent slide shows only the most popular criteria for yielding of
Isotropic, ductile materials.
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Multi-Axial Plasticity (2) PTC

Classical isotropic yield criteria

A MaX|mum Shear Stress Theory (Tresca yield criterion)

Yield in ductile materials is usually caused by the slippage of crystal planes along
shear stress surface.

The French scientist HEnescassumed that yield occurs when the shear stress exc
uniaxiashear yield strengjh

fom =230t
2

max

A Distortion Energy Theory (von Mises yield criterion)

This theory proposes that the total strain energy can be separated into two compc
volumetric (hydrostatic) strain energy and the shape (distortion or shear) strain en
assumed that yield occurs when the distortion component exceeds that at the yiel
simple tensile test. The hydrostatic strain energy is ignored.

%[(51' 52)2"'(52' 53)2"'(53' 51)2]:‘93/

Based on a different t heoreti cal der

Simulate supports this yield criteria only, since it is most commonly used and ofter
experimental data of very ductile material

2
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Multi-Axial Plasticity (3) PTC

Graphical representation of classical criter%

A In the three-dimensional space of
t he princi pall30anr esses
Infinite number of yield points form
together the yield surface. If the
stress state is within this surface, no

yielding appears. %}g .
A The most popular criteria, Tresca
and von Mises, 3D
S,- S
P = ——2C1

%[(51' 52)2"'(52' 53)2"'(53' 51)2]:53/2

look like shown right

A The von Mises yield surface Is Yield criteria for plane stress (s;=0, top)
therefore call ed t hafdanfiiree-id sbess Sale {boktofh)d
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Multi-Axial Plasticity (4) PTC

Other Isotropic yield criteria

A Generalized Isotropic Yield Criterion (Hosford)
1/n

é,(sl' 52)n+(52' 53)n+(53' Sl)n? =5
€
é

y

e e

2

I Experimental and theoretical dgtelding under combinqd stresses can be describec
singgpar ameter,on, with 1 O n O

i For n=2, this equals theMizescriterion

i This criterion was proposed in 1972 byoafoFdDepartment of Materials and Metallul
Engineering, The University of Michigan, ANi&k{iBpr,

A More criteria and deeper information can be found e.g. in [8] and [9]
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Multi-Axial Plasticity (5) PUC

Graphical representation of some other isotropic yield criteria

A Comparison of different popular criteria [9]

1.5+ Tresca

—— von Mises
e —8— Hosford72
W —A— Hill48

—4— Hill90
—»— Hill93
® Ex data

0.5 =0

-1.04F

(a) O ©)

a. |Fsteel
b. LGCsteel
c. Aluminum alloy
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Examination of Typical Stress States (1) PTC

VonMisesStress and Principal Stresses

A Note the von Mises yielding condition must always be satisfied:

25yield2 = (51 - 52)2 +(52 - 53)2 +(53 - 51)2
A This has some consequences, e.g.:
I In auniaxiastress state, the yield stress and the maximum principal stress will alw:
samd the maximum principal stress can never by greater thisinstsstiass!
i In a biaxial stress state, it may happen that one or more principal stresses may we
below thaniaxiayield stress, so do not be surprised!
I Inequitriaxiatension, yielding will never appear, since the principal stress differenc:
The material will break if the principal stress reaches ultimate stress Mvbdsstifessor
will still be zero. A ductile material will behave brittle in this case, that means ruptt

suddenly without previous yielding!

A In the following slides, we will examine some characteristic stress states
with a small demonstration model for better understanding
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Examination of Typical Stress States (2) PTC

Demonstration model

A We use a unit volume with symmetry

constraints
I Loads can be applied with forces or enforced
displacements in all principal directions
I The mesh consists of chegk only
I We have created measures for stress (true and
engineering) and strain (log and engineering), equ
plastic strain, reaction forces and absolute volume

A Note:

I Simulate uses exant{).5 for plastic (incompressible) =
strains, not 0.4995 like for incompreggitelastic
material

I Inhyperelasticity 0. 5 can | ead to
where the mesh acts too stiff for numerical reasons,
0.4995 fixes that. This problem does not occur in
plasticity.
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Examination of Typical Stress States (3) PTC

Material model used

A Simple linear hardening and perfect plasticity

model used Test! : Uniaxial
I Very soft model steel with 200.00 >
A E=20000B1Pa S190.0 ] S
A Yield strength = IMPa = 180,00 ]
A Elastic Poisson ratio = 0.3 211000
A Tangent modulus (linear hardening onlyMP2 < s 00 /
I Atits yield strength, the strain should be 150,00 ] e
g =is1 =0.0005=0.05% =) //
E 13000 _| e
. . . /
i The lateral strains are: 12000 /
R
e, =e =-Ls =-000015=- 0.015% N
E S L By L L B N B B
. . . 00400 a.010 0.azo 0.063n 9.040 b.a50
I At the yield strength, the unit volugrel ghi¥i Plasiis Sivals
Increases to Note:
V, =1+ )@+ e)(1+¢e)° 1.0002mnf Log strain LDA results are translated into

engineering strains with computed

i All subsequent analyses performed in LDA measures, e.q. (e*strain_XX)-
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Examination of Typical Stress States (4)

. . . 52“
Uniaxialension s,
7z \ /‘/
.. X
A Perfect plasticity results
. I 1.7 |
I Axial stress stays constant aviB@after yielding s, 1 st
\. y °1
I Volume does not further increase when material yields, like expected
) e
_Sy
ress K Waolum
Q%/r‘aiﬁ_}{x_engineering strain §<>< _engineering
“Windoaw 1" - enf < _finestepyield_idealp - enf_¥_finestepyield_idealp
"Window 1" - enf_x_finestepyield_idealp - enf_x_finestepyield_idealp
100.00 _ ) i N . N 1.00025
80.00 _| 1.00020 - 5 5 5
GraphTool |
7] strain_XX¥_engineering: 0.0005
§ G000 _ ﬂ stress. JOC 99.955 3100015 —_ GraphTool
u-..l 1 5 B ﬂ strain_ﬂ_engipeering: 0.0005
. N oK 2400010 _| Volume: 1.0002
w ] _ oK
2000 _ 1.00005
0.00 | | 1.00000 |
P Pl i E
0.000 0001 0002 0003 0004 0005 0000 0001 0002 0003 0004 0005
strain_XX_engineering strain_xX_enginesering
o stress_XK a Yolume

Basics of Elasto-Plasticity | Dr. R. Jakel | Rev. 2.1



Examination of Typical Stress States (5) PTC

Uniaxialension

A Linear hardening results
I Axial stress =tfirincipal stress increases with factor 100 reduced slope after yieldir

I Volume further increases when material yields: Elastic strain increases because s
increases during yielding, too! (Note: Analysis was performed in LDA, since SDA «

capture this volume change very accurately)

tl"e_)S HOK Yolym
ay, Strain
Q%/r‘ains]_m -
"Window1" - enf_*_finestepyield - enf_X_finestepyield
“Window 1" - enf X finestepyield - enf X finestepyield ISR LA UEIE = EILAIMESEbS
1.0004
20000 _
175.00 ] ]
125.00 o 7]
«100.00 Graphtoct 51.0002 —
> _ strain_)x: 0.000499875 i i 0
£ 7500 B o o oo0ss - i B e
5000 _F 1.0001 _F
] OK d OK
2500 _ _
0.00 1.0000
| I | l | I | I | I 1 I 1 I 1 l 1 I | I
000 Q01 00z 003 004 005 000 001 002 003 004 005
strain_xx strain_#x
o stress KX o Yeolume
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Examination of Typical Stress States (6)

PlC

Pure Torque (1) s}
y Ve
AT
A We load the volume with the uniaxial yield limit N
strength: s, =-s, =Y, F—A—
; y 0 EERN Sy Sy
| Voansesstress vS. equivalent plastic strain reflects the ol 2,
uniaxidinear hardening material input curve, like expe¢ ted—-_s b\%\
y "« \%
g E_STI'BSS_VFFI Q;\/% StI'BSS W
e Ry cale™1 0000E+
Loac‘i?aet:' mmec(]]LoadSet Loac?set 8ummegLoadSet
“Window 1" - pure_torque - pure_torgue "Window 1" - pure_torgue - pure_torgue
180.00 _ 180.00 _
160.00 ] ’ 160,00
,]4[]0[]_— o Testl : Untavial ) 14000_—
£ 120,00 2 S o (512000 2
210000 ] / 2100.00 _]
£ 3000 == S 3000
& §0.00 \50:002 // él 60,00 _]
= 4[]0[] ] \40.00_: // = 4GGG ]
20,00 . // 20.00 ]
0.00 w0 0.00
O R T T
|:||:||:| |:||:|1 DGE GDS 0 [IIGU! I (% OIII]! ‘ I|) G‘ZU| ‘ (I),D‘Sﬂlp;q(i*(;;i(ﬂl SI“EG?;U l:ll:ll:l 001 |:||:I2 003 DM
strain_eq plastic strain_ 2K
& Max_Sress vm o max_stress_vm
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Examination of Typical Stress States (7)

Pure Torque (2)

I The max. and min. principal stresses (=strasd)y
show yielding much belowrtrexiayield strength of

100MP&
stress prin %tressgrin
;%Elﬁi}’f){m% ( érailj_%l{}{GDDE il
: + cale 1. +
ngc%et: ummegLoadSet Loac?aet: ummedLoad
“Window 1" - pure_torque - pure_torgue "Window 1"
12000 0.00 _
- -10.00
19000 — -20.00 3
= - £ 2000 3
5 80.00 4 =
i = _40.00
o = iy
@ 60.00 _ & 5000
EI & -60.00 7
é 4000 _| E -r0.00 7
2000 | -50.00
a -90.00
0.00 -1[][].[]D'I | e —— : |
DL L D L B B B T E TRt et

0000 000 Q020 0030 0040
strain_ 2%
max_stress prin

=t
Ry

0000 0010 0020 0030 0040

- sfrain_xx
min_stress_ porin

=t
Ry
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Examination of Typical Stress States (8) PTC

Pure Torque (3)

I The volume should not change for this loading state,
small numerical disturbances

I Strain energy increases dramatically aNksaestress
reaches yield limit of MRa

Ra’tr:rlgurqﬂ ﬁfm'n_energy
%calle—’l LO00E+Q0 stress wm (WPa)
Loadset SummedLoad>et Scatl? ’l.gDGI]E+ i
“Window 1" - pure_forgue - pure_torgue HOEleBElESTMEE Lozt
p —_— q p —_— q Ilwndgwalll_p
1.000100 _
i 6.00__
1.000075 _| |
1000050 _ 9.00—=
1.000025 _] =4 00
= T _
%W-GGGGGG oS %IS.GG_
>0.999975 _] = s
i 2200 ]
0999950 _ i ]
0999925 _ 1.00
T T T T T T T
0000 0010 0020 0030 0040 0.00 45 00 90 .00 13500 180.00
strain_sx masx_stress vm
o Volume & strain_enerdgy
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Examination of Typical Stress States (9)

Biaxial tension rafg= 1.2 ¥ s,= 0.5 ¥ s5=0 s,
AT A
I This biaxial, plane stress state allows to load the material SN e
well above thmiaxiayield limit without yielding! — 3 p
. . s, 7| Sy S;
i Just above, =s,=115MPayielding takes place, A
15 % above thaixialimit e

trle_)a R tress Y
= _
z%inﬁ_m @Eﬁ% XX
Loadset summedload>et

“Window 1" - biaxial_tension_ratio - biaxial_tension_ratio

Loadset SummedLoadSet
“Window 1" - biaxial_tension_ratio - biaxial_tension_ratio

S

12000 5000 _
100.00 — 4000 _|
80.00 7
§ ] = 3000
w! B0.00 ! _
iy o
b= . 22000 _
w4000 _| o
0.00 (.00
I | I | I | I | I | I | i |
(.0000 0.0010 0.0020 00030 00000
Strain_Hx
stress KK

Pt

0.0010 0.0020
strain s

stress Y'Y

0.0030
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Examination of Typical Stress States (10)

Biaxial tension rafg= 1.2 ¥ s, = 0.5 ¥ s;=0

I The graphStress vs.-&frain shows a sharp bend, since
negative incompressikdtrain prevails after yielding!

I The voiMisesstress vs.-&train shows thaiaxial
material behavior, like expected

t Y ETress wim
Ve e
train Y train’_»ox,
Loadset summedLoad>et Loadset summedlLoadset
“Windaow 1" - biaxial_tension_ratio - biaxial_tension_ratio “Windaow 1" - biaxial_tension_
5000 _ 12000
4000 | 100.00 _| —_—
] £ 50,00 _
> 30.00 -~ i
= ol
! i o 50.00
@ &
22000 _ | .
o & 40.00
- E i
10.00 4 2000 _|
0.00 0.00 _
I L L L L DL L L L L
-0.00015 -0.00005 0.00005 000015 {.0000 0.0010 - 0.0020 (.0020
strain Y'Y strain_x
stress Y'Y May_Siress yvim
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Examination of Typical Stress States (11)

Equ

itriaxidknsion

AWe load all directions, e.g. s, =5, =5, =10Y,

Yielding never appears, since aII prlnC|pal stress differences ar
Inequitriaxiaénsion, the ductile material will suddenly break bri
when ultimate strength is reached, without previous yielding:

Under hydrostatic pressure, yielding or even rupture in general will not
appear under practical achievable pressures

F'R/% stress prin

gtrEﬂ HH
Loadset SummedLoadSet

"“Window 1" - equitriaxial_tension - equitriaxial_tension
1000.00
Q00.00 _]
&00.00
= 70000
=1 600.00
@ 500.00
B 400.00
8 300.00
200.00
10000
0.00

L L L L
0.0000 00005 0.0010 0.0015 0.0020 0.0025
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max_stress_prin

N0

stress_won_mises

010 __

0.05 _

=
)
=t

=
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=
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=
[

: .
@I}Ele_)sasa_von_mmes

Loadset SummedLoadSet
“Wyindoe 1"
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00000 00005 00010 0.0015 0.0020 00025

strain_xx

Etress_won_mises
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Hardening Models (1) PTC

Basics of material hardening .
4

A Bauschinger effect
i If a metallic material is loaded above its yield stre y
the load is reversed, its yield strength in the rever
direction becomes reduced

I This effect was described by J&d@rschinger
(18341893, Prof. for engineering mechanics at the
MunichPolytechnikgm Sj

I The analogous model for this effect is shown righ
It consists of a springelfresenting the elastic mate
behavior. In serial connection théte is a friction
element Fand another spring(iiSually J&< K) in
parallel connection

el |
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Hardening Models (2)

Basics of material hardening

A Kinematic hardening (Bauschinger effect)
i Ildeal kinematic hardening means that the yield surface of

the yield law is just offset, its size remains unchanged

PTC

i The yield Iimit 1 s constarl
locus changes

A 1sotropic hardening
I For ideal isotropic hardening, the direction of the loading

does not influence the yield limit
I Here, the yield surface simply expands if the matet
loaded above yield

A Isotropic kinematic hardening

I In reality, usually both models have to be combine
describe the material behavior.
I TheBauschingemumber describes the relation of kin

and isotropic hardening
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Part Il

Applying Simulate to Elasto-Plastic Problems

Opportunities & Limitations
Tips & Tricks
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Isotropic Hardening (1) PTC

Application @redSimulate (1) i

train’_d

"Window 1" - enf_X_cyclic - enf_¥_cyclic

A Isotropic hardening -
I CredSimulate supports isotropic 5000 ] /
hardening only, therefore currently the Koo ]

Bauschingeffect cannot be described

stre

50.00 4
i

0.00

T
0.00 0.01 0.02 0.03 0.04 0.05

A Example L
i Simple linear hardening material used .

A Load history: oo

30000

/N /\ //
=1/ N\ AR ] L//// ]

“Windoiw1" - enf X cyelic - enf X _cyclic

=
=
=1
(%2}
—

stress

0 -100.00 |

-0.005 : : : .
\ / -200.00 _]
-0.015 \ / -30000 _|

-0.025 -400.00 ‘ T : T : ‘ T : T ‘ I
-0.03 -0.02 -0.01 0.00 0.01 002 0.03
strain_»x

Stress_ros
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Isotropic Hardening (2)

Application @reaSimulate (2)

A Cyclic Loading
i Since currently only isotropic hardening is su

cyclic loading especially with the linear harde

Power law is not realistic, because the mater
Aharden untii | I nf I ni

A Preferred Material Model

I In this case, approximate with perfect plastici
exponential hardening law (both have an upp

A Load history
e
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0.02

/
/
/

\
A
\

0.015
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0.005

0
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o
180.00

| §|120.00__/

o
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Working with Material Laws in Simulate (1) PTC

What do | have to take care about when | use a material law within Simu

A Plastic material laws and test data

I When entering thlasteplastic material/test data into the data dialogue, note that yot
enter engineering stress vs. engineering plastic strain for SDA and true stress vs.
plastic strain for LDA. Subtract the elastic strain from the total strain to get the pla:
required for input. Note the curves start with the yield limit stress, not at zero!

I For all material laws except of perfect plasticity, the entered stress must be a stric
function of the engineering strain. A decrease of engineering stress at higher strai
described in a SDA (see example 1 of part Il for further details).

I Only the exponential plasticity law allows to define an upper limit of plastic stress,
approached asymptotic!

I The material laws do not allow to calculate (accidently) necking under high loads i
domain, if there is no imperfection in the model; so they do not allow to predict wh
really appear (see again example 1 of part Il for further details).

A Stress and strain output
I Note that Simulate wil/ out put engin
di s pl ac e menatacsvated.(Ifar DA} peifosmedCsawie0 Simulate output
logarithmic strain and true stress (until Wildfire SAbugngiisilerianstrain).
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Working with Material Laws in Simulate (2)

Graphical representation of different strains [2]:

PTC

= 3 2
S 1172-1,
| - . M . L~ -
4(7; )e —gngineering strain / G 2 2
' ——|ogarithmic strain
——@Green-Lagrange strain
2 ——Eulerian (Almansi) strain
l, -1
—1" "0 —y_
e _e= ] /-1
Reported until Wildfire 5 in LDA: Almansi Strain /
1
\///\~e =In(,/1,)=In/
0.5
%/ 11,21,
/ \e —— 1 )
0 | | | | | | | | | | | | | | | | | | | E -
I I I I I I I I I I 1 2
0.6 09 1 1.1 1.2 13 14 16 1.7 1.8 19 2 21 2.2 23 24 25
-0.5
v | -/ ~ stretch | =/l
Reported since Creo Simulate in LDA: Logarithmic strain
-1 (also called ﬁhkmd:kybrasltd ul al o
obtained by integrating the incremental strain: Y ﬁ_l = "’1— Y g :In§—8 In/
N Clo+
-1.5 2 3 4
. e e e
Ueg=Inl+e)=e- —+—- —+-...
2 3 4
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Small Strain and Finite Strain Plasticity (1) PTC

Sma” and flnlte Straln pIaSUClty Static Analysis Definition x

Name:
enf_X¥Z_idealp

ALiterature separates | smmm

Use idealplastic material for this

a n d ﬁ f i n i t e S t r a i n O p ENUHIin&ﬂrsteLuadHisturies Inertia Relief

Nonlinear Options

I In small strain plasticity, just small deformations—zeee: e rmmm—
allowed and the total deformations as well as th,  “ce

deformation increments are additively split into ¢ o s

elastic and plastic pexg.te,. This assumption is | == e

valid for strains up to a few percent, then it becq itz voe ceeoz 6 ramo :
inaccurate ™ Loas st componen

i In finite strain plasticity theory, the deformation | = " @€ ==
gradient is split multiplicatively into an elastic an ...
plastic part. This allows to treat problems with v~ ’
large deformations, like forging processes. R

I The mathematical methods especially of finite g =~ ™™™ e rremmmmermn
plasticity are very ambitious and far beyond the

scope of this presentation.

ry
b

Excluded

C.
onvergence Output Elements

Advanced Control...

oK Cancel
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Small Strain and Finite Strain Plasticity (2) PTC

Mechanic&/F 5.0 andreoSimulate differ in plasticity models

A Creo Elements / Pro Mechanica WF 5.0 supports small strain plasticity
I Here, the relation betwetal straianddisplacemert linear: Strains are output as
engineering values.
I Plasticity is limited to SDA (small displacement analysis) only, LDA (large displact
analysis) therefore is not supported in this release

A Creo Simulate 1.0 and 2.0 also support finite strain plasticity:

I Finite strain is implemented for 3D models if LDA is activated.

i In this case, the plastic (and elastic) strain is output as logarithmic strain: Simulate
iIncremental strain at each load step and then integrates it to get total strain. This ¢
strain being logarithmic (see slide 42).

I For 2D models (plane stress, strain & axial symmetric), still just small strain plastic
supported. So if LDA is used with these model types even though, e.g. in combing
contact analysigjperelastimaterial, or nonlinear spring, Simulate issues a warning i
strain becomes > 10 %

I Internally, the engine still uses large displacement calculations in this case, but th
calculations in the éBsteplastic elements themselves are small strain.
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Small Strain and Finite Strain Plasticity (3) PTC

Performing finite strain analyses

A What can | do if a need finite strain calculations, but have a 2D problem?
i In these cases (plane stress, plane strain or axial symmetric models), built up you
3D segment with a small angle or thin slice using appropriate constraints and mes

i Example: An axial symmetric problem as 2D axial symmetric and as 3D segment

I Pl ane strain models can be set up by
thickness and use mirror symmetry constraints at the slice cutting surfaces, see [
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