

a computational fluid dynamics and structural mechanics challenge

Dipl.-Ing. Jan-Christoph Reul, PRETECH GmbH, Hamburg

All rights reserved – Copyright per DIN 34

Outline

- » PRETECH GmbH
- » Temperature and pressure distribution with Autodesk Simulation CFD
- » Forces and stresses with Creo Simulation
- » Conclusions

PRETECH Predictive Design Technologies GmbH

- » Managing Director: Dr.-Ing. Stefan Reul
- » Foundation: End of 1992
- » Internet: www.pretech.de
- » Cooperations
 - » Reseller for PTC (Parametric Technology), Needham, MA, USA
- » Memberships:
 - » Hanse-Aerospace e.V.
 - » CAE-Forum
 - » Hanse Supplier

Our services for you I

- » HighEnd Engineering for e.g. Aerospace, Automotive, Medical, Mechanical Engineering, Electronics, etc.
- » Computations and Simulations with Creo Simulate, Autodesk Simulation CFD, ABAQUS explicit and Creo Parametric MDO/MDX for static, thermal, dynamical, kinetic, fluid dynamics, etc. problems
- » Reseller for PTC Simulation Codes: Creo Simulate, Fatigue Advisor, Plastic Advisor, MDX/MDO, etc.

PRE TE(H

Our services for you II

- > Trainings/consulting (some courses also in english):
 - "Virtual Mechanics"
 (Basics of mechanics for future FEM users)
 - "Validation of stresses " (How must be FEM results validated eg. for endurance strength ?, an introduction)
 - "COMPOSITE/WORKS" (Basiscs for the usage of laminates;, ,design', ,calculation', ,production')
 - "Trainings for Creo Simulate (MECHANICA)" (also in cooperation with PTC)
 - "Heat transfer"
 (Opeartion with temperature fields and thermal strains)
 - "MKS-System" (Multi body-simulation with MDO/MDX)

Cylinder Head

Cylinder Head - Modeling

- » Main objective: To determine the pressure distribution on the sealing surfaces of a compressor cylinder head with Autodesk Simulation CFD and Creo Simulate
- » Additional objectives:
 - Details on the deformations and displacements of the cylinder head
 - Hits of potential problem areas
 - Informations about the influence of the initial load of the screws
 - Indications to the influence of pressure
 - Statements to the influence of temperature

Cylinder Head - Modeling

- » Limitations:
 - "As simple as possible" start, closer examination only if necessary
 - The interface to the compressor housing is defined as completely flat
 - The heat generation inside the compressed air is simplified (heat source below the end plate, cooling with water)
 - Outer influences are neglected

Cylinder Head – CFD-Model

All rights reserved – Copyright per DIN 34

Cylinder Head – CFD-Model

All rights reserved – Copyright per DIN 34

Cylinder Head – CFD-Mesh

- » CFD-Elements:
 - > Solid: 11,069,154
 - > Fluid: 8,762,587
 - > Sum: 19,831,741

Cylinder Head – CFD-Mesh

Cylinder Head – CFD-Mesh

PRE TE(H

Pressure distribution

Pressure distribution

Pressure distribution

PRE TE(-1

Velocity/temperature of the compressed air

PRE TE(I-I

Velocity/temperature of the compressed air

<u>GLview Plugin not installed. Press here to install plugin</u>

All rights reserved – Copyright per DIN 34

Velocity/pressure of the air

Velocity/pressure of the air

CFD - Results

- » Water: Outlet 99.5°C (Inlet: 89.9°C)
- » Pressure chamber: Outlets: 134.6°C & 138.5°C (Inlet: 274°C)
- » Air chamber: Outlets: 46.8°C, 38.2°C, 34°C; 57.1°C, 62.2°C & 63.7°C (Inlet: 23.4 °C)

PRE TE(I-I

Cylinder head – CAE-Model

Cylinder head – CAE-Model

All rights reserved – Copyright per DIN 34

Cylinder head – CAE-Model

Seal behavior

- The manufacturer supplied the measuring data of the forcedeformation curve
- Relevant is the elastic behavior from 120 and 170 μm

Creo Simulate - Model

- » Seal modeling:
 - Linear elastic behavior like in the measurements (loading/unloading)
 - Orthotropic definition of stiffness (high modulus of elasticity perpendicular to the seal level, low modulus and shear modulus in the sealing surface)
 - It can be assumed that the seal always covers the whole sealing surface
 - For the static analysis, the seal is defined as rigidly connected with all parts (except for the contact analysis), therefore no friction must be considered
 - The seal section is simplified as a rectangle

Creo Simulate - Model

- » Boundary conditions: temperature & pressure distribution computed by Autodesk Simulation CFD
- Initial screw loads are generated with a temperature difference of 100 K; the thermal expansion coefficient is adapted to the screw forces
- » Element count: 53,560 p-elements
- » DOF: at final pass: 3,051,645

CAE - Mesh

Contact - Analysis

> Typical convergence of the screw force

P-Durchlauf

"window1" - vorspannungs_analyse_151203 - vorspannungs_analyse_151203

Contact - Analysis

Contact - Analysis

Comparision contact vs. static analysis

PRE

TIE(I-I

Comparision contact vs. static analysis

Temperatureinfluences

Temperatureinfluences

Comparision of seal pressures

Comparision seal pressure

PRE TE(H

Conclusion

- » Autodesk Simulate CFD computes the pressure and temperature distribution
- » Creo Simulate can calculate the strains and stresses within the cylinder head screws in the light of preload, external temperature field and pressure loads
- » It is not necessary to consider friction
- It is not necessary to compute a contact-analysis

PRE TE(I-I

Conclusion

- The main results are:
 - The most dominant parameters are the screw forces
 - A second critical parameter is the temperature
 - > A third critical parameter is the pressure distribution
 - Increased stiffness of all parts drastically increases the reliability of seals (thigtness; confirmed by tests)
 - All calculation results strongly promote the understanding of the mechanical and thermal behavior of the cylinder head

Thanks for your attention Questions ?

We're MCAD Fanatics

All rights reserved – Copyright per DIN 34