Determination of Temperatures and Stresses inside Space Solar Cells and Special Panel Structures for a Mercury Mission Using Pro/ MECHANICA

Content

Dr.-Ing. Stefan Reul, Gordian Klockmann, PRETECH GmbH, Hamburg

Purpose
Solar Generator Basic Design
Pro/MECHANICA Model
Thermal And Structural Results
Summary

With friendly permission of ESA/ESTEC, Noordwijk, and Galileo Avionica, Milano

Purpose

- Development Of A Solar Cell Assembly Technology For A Mercury Mission (PVA)
- Environment:
 - Up To 25 Solar Constants (SC)
 - At Mercury 10 SC
- Goal: Temperatures At Solar Cell Level Below 300 °C
- Determination Of Temperatures And Stresses

Purpose

- Investigation Of Different:
 - Generator Substrates
 - Ratios Between Optical Surface Reflectors (OSR's Or Mirrors)
 And Solar Cells
 - Solar Cell Types

Basic PVA Design

Modeled Area Boundary **OSR String SCA String** Bus Bar

Considered Model Features

- Parts: Substrate, Adhesive, Solar Cell, OSR, Cover Glass, etc.
- Cell Sizes Between 4x4 cm² and 8x6 cm², Thickness 0,15 mm
- CFRP And C-C Honeycomb Substrate And Cover Layers
- Calculations Should Consider:
 - Symmetry Around The Model Boundaries
 - Radiation
 - Solar Absorption On All Front Surfaces And Edges
 - Orthotropic Material Behavior Of The Honeycomb
 - Correct' Material Behavior At Elevated Temperatures (300 °C)
- Solar Incident Angle 15° (25 SC) And 90° (10 SC)

3D-Model Geometry

Structural 3D-Model With Constraint Conditions

Detail In The Gap Region

Simulation Analyses

- Pro/MECHANICA Thermal Does Not Support Radiation
- Black Body Radiation Can Be Modeled By Using Convective Boundary Conditions
- The Convection Coefficient Is Than Temperature Dependent And Must Be Calculated Using An Iterative Process
- Within The Iterationts Emissivity Is Changed
- Thermo-Mechanical Coupling Calculated In Two Steps:
 - Quasi-Static Thermal Analyses With Pro/MECHANICA Thermal
 - Quasi-Static Structural Analyses With Pro/MECHANICA Structure
- Pre-Analyses For Honeycomb Replacement With Bulk Material

Temperatures; Left: CFRP Substrate, Right: Al Substrate

Temperatures On Cells; Left CFRP Substrate, Right: Al Substrate

10

Displacements; Left: CFRP Substrate, Right: Al Substrate

Typical Stress Results For A Ge/GaAs Solar Cell

PTC/USER WORLD EVENT EUROPE, BERLIN EN EUROPE, BERLIN EN EUROPE, BERLIN ET EUROPE, BERLIN EUROPE, BERLIN ET EUROPE, BERLIN ET EUROPE, BERLIN ET EUROPE, BERL

Results Summary

- Temperatures Within The PVA's With C-C Skins Are Lower Or Even The Same Than With Al Skins
- The Temperatures Within The SCA's Depend Highly On The In-Plane Thermal Conductivity Of The Substrate Skins
- Aluminum Skins Introduce High Stress Levels Within SCA's And OSR's
- Stress Levels Introduced By CFRP And C-C Skins Are 30 % To 50 % Lower
- Gap Filling With Adhesive Results In Additional Corner/Edge Stresses

Results Summary

- A PVA With C-C Skins, 6x4 cm² SCA's And 4x4 cm² OSR's Seems To Be An Optimal Configuration
- Increase Of Silver Layer Thicknesses And Honeycomb Core Wall Thickness Improves Thermal Conductivity
- PVA's Can Be Calculated With Pro/MECHANICA Thermal And Structure
- Radiation Can Be Considered Only By Using An Iterative Process

Thank You!